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 This book is the product of a collaboration among three researchers—
Andy, Barbara, and Marie—who were supported by the insights and 
efforts of many colleagues and partners. The building blocks of this book 
stretch back multiple years, but the catalyst for writing it came from the 
rapidly developing set of lessons we were learning from research partner-
ships that involved using data-intensive research techniques in collabora-
tion with educational practitioners. 

 Starting in 2012, the three us began wrestling with what it means to 
use new forms of evidence in the service of educational improvement. 
Barbara, for example, was working to understand the landscape of how 
to use data stemming from digital learning environments and administra-
tive data systems through her brief sponsored by the U.S. Department of 
Education on  Expanding Evidence Approaches for Learning in a Digi-
tal World . Andy and colleagues began a project on measuring learning 
behaviors and strategies using data from digital learning environments. 
This project involved working with both researchers and practitioners to 
better understand how measures of learning behaviors could be shared 
and used to improve digital and face-to-face learning environments. Over 
time, this project led to a partnership with the Carnegie Foundation for 
Advancement of Teaching and the Carnegie Math Pathways, a networked 
improvement community working to solve the developmental math crisis 
in the United States. 

 The partnership with the Carnegie Math Pathways presented us with a 
unique opportunity to learn first-hand the principles, practices, and tools 
of improvement science. Subsequently, we began integrating improve-
ment science approaches into more and more of our data-intensive 
research work. Throughout this book, our experiences working with the 
Carnegie Math Pathways serve as one of two anchoring cases illustrating 
necessary conditions for engaging in partnership-driven, data-intensive 
improvement research. 

 Prior to our partnership with Carnegie, Andy participated in a unique 
event hosted by the National Science Foundation referred to as an Ideas 
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Lab. The premise of the Ideas Lab was to bring researchers together for a 
concentrated amount of time to promote the development of collabora-
tions that could solve pressing problems related to data-intensive research 
in education. Andy worked with Anna Gassman-Pines from Duke Univer-
sity at the event and formed a collaboration around merging data from 
two statewide agencies in North Carolina. Andy and Alex Bowers from 
Teachers College, Columbia University also met at the Ideas Lab, and along 
with Mingyu Feng and a successful charter management organization—
Summit Public Schools—formed a research-practice partnership to iden-
tify necessary conditions for engaging in collaborative data-intensive 
research. Our partnership with Summit represents the second anchoring 
case for the book. 

 As these and other partnerships were developing, Andy, Barbara, and 
Marie collaborated to identify ways of harnessing the technical capabili-
ties of various research labs within SRI International—our home orga-
nization for much of our time working together—to apply new machine 
learning techniques to data originating from a variety of digital learning 
environments. We sought out experts in other parts of SRI who could 
assess the viability of using machine learning to develop data products 
that could directly help practitioners. Through these experiences, we 
quickly came to appreciate the importance of wrapping data-intensive 
research techniques within an overarching process that includes deeply 
understanding the problems to be solved from the perspective of edu-
cational practitioners and drawing on what can be learned from prior 
research before diving into a dataset from a digital learning environment 
or administrative data system. Similarly, we realized the importance of 
working with practitioners to jointly interpret a data analysis as well as 
co-develop potential future courses of action inspired by an analysis. 

 Throughout these varied experiences, we have learned a lot about 
what does and does not work in using data-intensive research methods 
to improve learning environments. Our goal in this book is to convey les-
sons from our own experiences as well as the current state of the art in 
the field of educational data mining and learning analytics in the context 
of an explicit set of tools and processes for engaging in collaborative 
data-intensive improvement. 

 As researchers with diverse backgrounds, we share a commitment to 
using research evidence to inform educational policy and practice and an 
enthusiasm for engaging in partnerships with educators to pursue data-
intensive research. We came to this place by different paths, however, 
reflecting our individual methods of training and research experiences. 
Hopefully understanding our different paths will help newcomers to 
the field see ways of entering into the exciting work taking place at the 
intersection of data-intensive research, educational improvement, and the 
learning sciences. 
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 After earning her Ph.D. in computer science at the University of Con-
necticut, Marie came to SRI to join the Applied Artificial Intelligence 
Program, where she worked on intelligent tutoring systems and applied 
methods for analyzing learners’ explanations of their thinking to mili-
tary training. The desire to apply her skills to K–12 education led Marie 
to transfer to the Center for Technology in Learning, where she started 
working with Barbara. 

 Barbara earned her doctorate in educational psychology at the Univer-
sity of California, Berkeley, where she conducted experimental studies on 
children’s learning and memory. A desire to move out of the laboratory 
and into research in real-world education settings eventually brought 
her to SRI, where she founded the Center for Technology in Learning in 
1993. Her research experiences include numerous studies of how learn-
ing technologies are implemented in schools and one of the first studies of 
how teachers and school leaders use data from web-based data systems 
to inform school improvement efforts. 

 Andy earned his doctorate in learning technologies at the University of 
Michigan, where he studied the diffusion and implementation of technol-
ogies, data use in schools, and was an early contributor to the University’s 
developing learning analytics practice. As a researcher at SRI and Digital 
Promise, Andy has worked with data from dozens of learning technolo-
gies and has supported multiple research-practice partnerships. 
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 The daily activities of schools and universities—from taking attendance 
to assessing students—can leave a trail of data that, under the right con-
ditions, can be used to explore teaching and learning like never before. 
Until recently, though, researchers had to choose between collecting rich 
data on a small number of individuals or amassing less rich data for 
larger numbers of individuals. And in both cases, collecting data on the 
same individuals over time required significant costs and complexities. 
For activities that take place in digital learning environments like games, 
learning management systems, and intelligent tutoring systems, surpris-
ingly rich data can be collected on dizzyingly large numbers of learners 
over time. While opportunities to collect and analyze new forms of data 
increase every day, critical challenges need to be overcome in order to use 
these data to improve teaching and learning. 

 Along with new forms of data, such as system log data (i.e., records of 
users’ interactions with a digital learning environment), familiar forms 
like text, audio, and video are becoming increasingly open to in-depth 
analysis—at scale—through machine learning and artificial intelligence. 
These newly found and newly analyzable data are often described as “big 
data” both inside and outside of education. Over the past decade, analyz-
ing educational big data has largely occurred in research labs at universi-
ties, technology companies, and non-profit research institutes, and this 
basic research, with few exceptions, has yet to diffuse widely or to fun-
damentally change teaching and learning ( Baker, 2016 ;  Martin & Sherin, 
2013 ). Where there have been successes, such as with the ASSISTments 
platform ( Roschelle, Feng, Murphy, & Mason, 2016 ) and in examples 
described later on in this chapter, new forms of data and new analytical 
techniques have been grounded in problems facing practitioners and used 
to develop and assess potential changes related to those problems. 

 As some have argued, improving teaching and learning at scale will 
require new ways of organizing the work of educational research (Bryk, 
Gomez, Grunow, & LeMahieu, 2015). Starting around the same time 
as educational data mining and learning analytics—some of the most 
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recognizable fields in what may be termed data-intensive research—an 
approach to conducting educational research referred to as research-
practice partnerships was taking shape ( Coburn, Penuel, & Geil, 2013 ). 
While the idea of forming partnerships is not new, frustrations with the 
status quo, a critical mass of success stories, and new funding opportuni-
ties have coalesced into an overarching approach where researchers work 
on pressing problems of practice in an iterative and collaborative fashion 
with practitioners ( Penuel & Gallagher, 2017 ). In many ways, researchers 
working under the banner of research-practice partnerships have found a 
way to directly impact teaching and learning—by working directly with 
teachers and learners. While a disarmingly simple idea, this approach has 
profound implications both for  who  participates in the work of improv-
ing learning environments and for  how  that work is carried out. 

 In this book, we describe multiple efforts to use data-intensive research 
methods to improve teaching and learning. In particular, we highlight the 
important role that partnerships between researchers and practitioners 
can play in activating educational big data as a resource for improve-
ment. Through the lens of what we refer to as  collaborative data-intensive 
improvement  (CDI), we aim to make explicit the ways in which educa-
tional researchers can engage in longer-term partnerships with the goal of 
not just understanding learning but also of improving outcomes in real-
world learning environments. Doing this well, we believe, will require a 
fundamental rethinking of how data are used for research and improving 
practice. 

 Data-Intensive Research in Education 

 This book offers an introduction to the developing fields of educational data 
mining and learning analytics by describing goals, methods, and examples. 
In outlining the past, present, and potential future for these fields, through-
out this book, we focus our descriptions on using data and complex data 
analyses to improve learning experiences and educational outcomes. We 
illustrate this potential with firsthand examples that span multiple aca-
demic content areas, learning environments, and learner types. We provide 
examples of decision making at the classroom, school, and education sys-
tem levels taken from schools, universities, and community colleges. 

 Along with examples from our own work, we will describe how other 
researchers have employed educational data mining and learning ana-
lytics to address problems that originate in one form or another from 
the front lines of teaching and learning. In describing multiple examples 
and analytical approaches, we will highlight potential benefits and costs 
associated with each. The reader should know, however, that we are 
not attempting to provide a balanced treatment of all approaches. Our 
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emphasis will be on  collaborative  data-intensive research approaches that 
prioritize shaping practical improvements over advancing analytic meth-
ods. While we will not restrict our coverage solely to collaborative data 
analysis approaches, they will be our lens for choosing what to high-
light in a rapidly changing landscape. We hope that both researchers and 
practitioners will find this lens useful in making sense of new sources of 
education data, new analytic techniques, and new opportunities to form 
partnerships. 

 The Challenge of Jargon 

 One challenge facing newcomers to the field of data-intensive research is 
the wave of jargon they are likely to encounter. Already, in the first few 
pages of this book, we have referred to educational data mining, learning 
analytics, system log data, and big data. In an attempt to keep jargon to 
a manageable level, we have made explicit choices about the terminology 
we use in this volume, recognizing that some key details, distinctions, and 
research histories will be lost in this translation. 

 Before progressing further, we would like to orient the reader to a few 
key terms: educational data mining, learning analytics, data-intensive 
research, and educational data scientist. 

  Educational data mining  and  learning analytics  represent distinct fields 
that have a high degree of overlap (Siemens & Baker, 2012). For simplic-
ity, and to contrast these fields with other research traditions, we will 
refer to both of them as examples of  data-intensive research in education . 
The additional fields that we want to integrate into learning analytics and 
educational data mining include studies of data use in schools (e.g., data-
driven decision making) and collaborative research approaches (e.g., 
design-based implementation research and improvement science). As we 
will describe in  Chapter 5 , these additional fields are important both to 
the past and to the present of data-intensive research in the same ways 
that learning analytics and educational data mining are. 

 Educational data mining, which predates the field of learning analytics, 
largely concentrates on using machine learning techniques to identify pat-
terns within large educational datasets, often from specific digital learn-
ing environments like intelligent tutoring systems. Oftentimes, these same 
technologies are what deliver interventions aimed at improving learning. 
Learning analytics, on the other hand, tends to focus less on machine 
learning techniques and more on statistical and visualization approaches, 
whereby interventions aimed at improving learning are delivered as much 
by an individual as a technology. As  Baker and Inventado (2014 ) point 
out, the differences between these two fields grew out of different inter-
ests and backgrounds of the researchers in the two areas, and do not 
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reflect any fundamentally opposing beliefs about how people learn. They 
agree on the assumption that data collected at scale and analyzed with 
rigorous methods will help arbitrate between different theories and pro-
posed practices ( Bienkowski, Feng, & Means, 2012 ). 

 Data-intensive research “involves data resources that are beyond the 
storage requirements, computational intensiveness, or complexity that is 
currently typical of the research field” ( Dede, 2015 , p. 2). The field of 
education more generally is gradually expanding its data repertoire to 
include data from digital learning environments and from increasingly 
sophisticated administrative data systems. In addition, other familiar 
forms of data, such as video and audio files, can now be explored at scale 
with greater speed. Therefore, we use the term data-intensive research 
to integrate these developing examples as well as those stemming from 
educational data mining and learning analytics. 

 An  educational data scientist  is someone who practices data-intensive 
research in education. The term “data scientist” is expansive and touches 
on multiple knowledge, skills, and abilities (see O’Neil & Schutt, 2013). 
Anyone who uses data-intensive research methods is often referred to 
as a data scientist. And while data science has become a hot new career 
( Ferenstein, 2016 ), the knowledge, skills, and abilities needed to perform 
this role are often ill-defined, especially in education ( Piety, Hickey, & 
Bishop, 2014 ). Generally speaking, a data scientist is an individual with 
some combination of computer science skills, a background in statistics 
and mathematics, and relevant domain expertise (O’Neil & Schutt, 2013). 
 Agasisti and Bowers (in press ) define an educational data scientist as an 
individual who has “the technical skills to collect, analyze, and use quanti-
tative data, and at the same time the managerial and communication skills 
to interact with decision-makers and managers at the school level to indi-
viduate good ways of using information in the practical way of improving 
practices and initiatives” (p. 6). In the coming chapters, we elaborate on 
these descriptions and make the case that an educational data scientist is 
someone who clarifies how data-intensive research methods can be used 
to address questions of importance to educators, carry out the actual anal-
yses, and help develop and refine ideas for improvement. 

 Focus of the Book 

 Given the continuing proliferation of data and the increased sophistica-
tion of data-intensive research techniques, now is a good time to take stock 
of data-intensive research in education, articulate fruitful directions for 
advancing the field, and provide an onramp for newcomers. In working to 
achieve this ambitious and multifaceted aim, it is important to clarify what 
this book will and will not deliver. First, this book is not a how-to guide 
on data-intensive research methods in education. The interested reader can 
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explore a growing number of learning analytics focused Massive Online 
Open Courses (MOOCs) for this purpose, such as Ryan Baker’s  Big Data 
and Education , Tim McKay’s  Practical Learning Analytics , and the Uni-
versity of Texas at Arlington’s upcoming MicroMasters on Learning Ana-
lytics. In addition to educational applications of analytics, a researcher or 
data scientist, at some point, will need to group rows of data and apply a 
function, such as identifying the average amount of time a student spent in 
a digital learning environment across multiple sessions. Depending upon 
one’s chosen software package, without too much difficulty, one could use 
a search engine to identify a serviceable answer. Less searchable are strate-
gies for identifying sources of data in the first place and knowing how to 
work with practitioners to apply the right analytical technique to the right 
data and how to structure a meeting where researchers and practitioners 
come together to interpret and draw implications from a data-intensive 
analysis. In many ways, that is what this book is about. 

 This book is also not a standard course in educational research design 
or a program in educational leadership, though it does include elements 
and insights from these fields. It presents some fundamental research and 
leadership concepts as they relate to each other and to the goal of using 
data-intensive research to improve education outcomes. We seek to equip 
readers with an understanding of methods to enable clearer thinking 
about how new sources of data and new analytical techniques could help 
them create more desirable outcomes for students. 

 Examples of Data-Intensive Improvement 

 When  Romero and Ventura (2007 ) surveyed the data mining literature 
for education applications published between 1995 and 2005, they found 
only two articles published before 2000. In contrast, by 2016, a Google 
Scholar search returned over  one million articles  on this topic. And educa-
tional applications of data-intensive research have moved beyond schol-
arly publications to capture the public’s imagination through popular 
press coverage such as a recent  New York Times  article, “Will You Gradu-
ate? Ask Big Data” ( Treaster, 2017 ). In the following sections, we describe 
three diverse examples to introduce some of the possibilities. 

 Measuring Chronic Absenteeism and Its Causes 

 School districts have always kept data on their students, but it used to 
be hard to access or to organize the data in a way that would shed light 
on educational issues. For example, a school district would have a record 
system showing the number of students in attendance each day and 
would routinely compute the average daily attendance for the school year. 
Schools with attendance average daily rates over 90 percent generally 
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believed they were doing very well on this metric. But most schools, dis-
tricts, and states did not have the capability to look at attendance patterns 
for  individual students  over multiple years or to relate students’ atten-
dance patterns to their educational outcomes ( Balfanz & Byrnes, 2012 ). 
Without such a longitudinal student-level dataset, schools were missing 
the story of what has come to be called “chronic absenteeism”—missing 
10 percent or more of school days in an academic year. 

 The importance of attending school has long been recognized, but until 
recently we lacked the ability to quantify the impact of chronic absentee-
ism on educational outcomes and hence any basis for saying what level of 
absenteeism should be cause for concern. Increased computing capacity, 
improved tools for bringing together data from different data systems, 
and the use of unique, statewide student identification numbers permit-
ting linking multiple student-level datasets have enabled exploration of 
the issue of absenteeism in states and districts. 

 Analysis of data from Chicago Public Schools (CPS) by researchers from 
the University of Chicago Consortium on School Research, for example, 
found that missing 10 or more days of school during the year, whether 
excused or not, was a stronger predictor of school failure than low test scores 
at the end of the prior school year. Analysis of the CPS data also showed 
that ninth graders with high test scores who missed two or more weeks of 
school were more likely to fail than students with low test scores who were 
absent five or fewer days ( Allensworth & Easton, 2007 ). An issue brief from 
the University of Chicago’s To&Through project indicated that each week 
a student is absent during a semester of ninth grade is associated with a 20 
percent decline in the probability of earning a high school diploma. After 
becoming aware of the data on chronic absenteeism and its correlates, CPS 
began implementing a number of programs to address chronic absenteeism. 
One strategy involved improving the accuracy and availability of individual 
students’ attendance records so that teachers and school leaders would be 
motivated to examine them on a weekly basis in order to identify students 
in need of intervention. Another strategy involved creating a culture of col-
lective responsibility around attendance. Some schools started talking about 
the importance of attendance at school assemblies and posted attendance 
charts in school hallways. The combination of these and other approaches 
over the past decade have led to a 17 percent increase in high school gradu-
ation rates (To&Through Project, no date). 

 Using Learning Analytics to Improve Digital 
Learning Systems 

 System log data from digital learning environments are particularly 
promising because they can capture  who  did  what  and  when . Research-
ers and educational data scientists can explore this kind of data to look 
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at the sequences of actions taken by individual learners, greatly expand-
ing the potential to examine detailed learning activity data at a massive 
scale in order to glean insights into the  processes  of learning. Being able 
to go beyond analysis of outcomes to delve into learning processes opens 
up significant opportunities for improving both digital and face-to-face 
learning environments. 

 Since the 1980s, Carnegie Mellon University (CMU) has pioneered the 
design, development, and evaluation of digital learning systems that employ 
learning theory and artificial intelligence to adapt to the responses of indi-
vidual learners ( Koedinger & Corbett, 2006 ). More recently, with the 
availability of increased data storage and analysis capabilities, researchers 
at CMU began applying a variety of machine learning and statistical tech-
niques to the data produced when students use their tutoring systems in 
order to derive insights into how to improve those tutoring systems ( Koed-
inger, Stamper, McLaughlin, & Nixon, 2013 ). 

 A hallmark of the tutoring systems developed at CMU is that they are 
based on a detailed cognitive analysis of the knowledge and skill compo-
nents needed in the domain being studied. Each problem presented in the 
tutoring system was designed to assess one or more knowledge compo-
nents. One of the types of data researchers extract from the tutoring sys-
tem’s log files is whether the learner made an error or answered correctly 
each problem involving a given knowledge component. Ken Koedinger 
and Elizabeth McLaughlin of CMU leveraged this kind of data in a recent 
study in which middle school students solved large numbers of begin-
ning algebra problems online, including the three problem types shown 
in  Table 1.1 . The target proficiency in this study was being able to solve 
two-step story problems, such as the one shown in the left-hand column. 
The researchers wanted to figure out what kind of practice would best 
support students in acquiring this skill. 

Table 1.1 Story Problem Types Studied by Koedinger and McLaughlin

Problem Type

2-step Story Problem 1-step Story Problem Substitution Problem

Ms. Lindquist is a math 
teacher. Ms. Lindquist 
teaches 62 girls. Ms. 
Lindquist teaches f fewer 
boys than girls. Write an 
expression for how many 
students Ms. Lindquist 
teaches.

Ms. Lindquist is a math teacher. 
Ms. Lindquist teaches 62 girls. 
Ms. Lindquist teaches b boys.
Write an expression for how 
many students Ms. Lindquist 
teaches.

Substitute 62-f for 
b in 62+b
Write the resulting 
expression.

Answer: 62+62-f Answer: 62+b Answer: 62+62-f

Source: Koedinger and McLaughlin (2016).
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 Many instructional designers and educators would hypothesize that 
practicing one-step problems to mastery would be the best foundation for 
moving to the harder two-step problems. Although this makes intuitive 
sense, a major theoretical assumption in the CMU work is that difficulty 
levels predict transfer because both are a function of the same underly-
ing required knowledge components. When the Carnegie Mellon team 
analyzed data from the log files for these three types of problems, they 
found that students had more difficulty with substitution problems, like 
that in the third column, than they did with one-step story problems. 
For this reason, Koedinger and McLaughlin predicted that it would be 
more beneficial to practice symbolizing algebraic terms in the substitu-
tion problems than to practice one-step story problems. 

 Using a web-based tutoring system, the researchers randomly assigned 
711 middle school math students to either substitution practice or one-
step story problem practice in preparation for two-step story problems. 
Findings supported the researchers’ hypothesis that production of sym-
bolic representations was the key prerequisite for learning to solve the 
two-step algebra problems. Prior practice on substitution problems based 
on the cognitive model generated from this data-driven approach inspired 
an intervention that subsequent experimental testing showed would 
enhance learning on the target skill of two-step algebra word problems. 

 The researchers interpret this finding as support for their assumption 
that task difficulty data can be used as a proxy for skill transfer data. 
They point out the practical significance of this finding: Direct testing of 
the transfer of skills from one type of problem to another requires setting 
up an experiment to test performance on task B with and without prior 
practice on task A. Generating task difficulty parameters automatically 
through data mining can provide the input needed for cognitive models 
so that instructional design and development work can proceed more 
quickly and more ethically ( Koedinger & McLaughlin, 2016 ). 

 Identifying College Students at Risk of Dropping Out 

 Our third example returns to the challenge of identifying students at risk 
of leaving school, but in this case at the college level. Earning a college 
degree has major consequences for employability and lifetime earning 
( Pascarella & Terenzini, 2005 ). Thanks to the wide range of higher edu-
cation options in the U.S., including institutions with open admissions, 
increasing proportions of young people from all backgrounds start some 
kind of college program. But  completing  a college program with a degree 
or industry-recognized credential is something different. For students 
entering college for the first time in 2009, for example, only 53 percent 
earned a bachelor’s degree by 2015, six years later. 

 As state and federal governments have increased their scrutiny of 
completion rates for individual colleges, those institutions have become 
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acutely aware of the need to increase the proportion of their students 
who are retained from year to year and actually leave with a degree. Col-
leges and universities have turned to data-intensive research techniques 
to help them identify students who are at risk of failing to complete a 
course or program of study. Measuring graduation rates requires con-
necting the academic records from different terms for each individual 
student to measure whether that student persisted from one term to the 
next. By combining data from admissions applications and transcripts 
with data on performance in a particular course, analysts found they 
could identify groups of students at risk so that those students’ instruc-
tors or academic advisors could work with them to avoid course failure 
and dropping out ( Hanover Research, 2014 ). 

 Tim Renick, Vice President for Enrollment and Student Success at Geor-
gia State University, describes a well-known case of using data-intensive 
approaches to enhance college completion rates ( Renick, 2017 ). In 2003 
this urban public university saw just 33 percent of white students who had 
enrolled as freshmen and just 22 percent of under-represented minorities 
who had enrolled as freshmen leave the college with a bachelor’s degree. 
By 2017, Georgia State’s degree completion rate had risen to 65 percent 
for both groups of students, making Georgia State the only public uni-
versity in the nation where the completion rate for under-represented 
students is equivalent to that for white students. 

 Georgia State implemented multiple changes in its practices and inter-
ventions with students at risk to achieve these results ( Kurzweil & Wu, 
2015 ), but a key enabler was a collaboration with EAB (formerly the 
Education Advisory Board). EAB helped Georgia State comb through 
10 years of student data records—over 2.5 million course grades. These 
analyses provided insights such as the fact that prospective political sci-
ence majors who got an A or B in their first political science course had 
a 75 percent probability of graduating on time, while those who got a 
C had only a 25 percent probability of doing so ( evoLLution, 2016 ). 
The university had been doing nothing to follow up with students who 
earned Cs in their gateway courses because a C grade is adequate to earn 
the course credit toward graduation. Georgia State hired more academic 
advisors in order to act more promptly on information identified by an 
analysis. 

 The Graduation and Progression System (GPS) academic advising dash-
board developed by Georgia State and EAB displays real-time analyses 
of students’ academic progress and the implications of certain decisions, 
such as taking courses out of the usual sequence. 

 The GPS displays results from a system that tracks students for 800 
different alerts that can trigger action: 

 Now, every day the system searches all of our student-information 
systems for evidence of any of these 800 things. Did a student register 
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for the wrong course? Did they do poorly in a prerequisite course? 
Are they in a major that does not fit their ability? When an alert goes 
off, an advisor proactively reaches out to the student, typically within 
48 hours. 

 ( evoLLution, 2016 ) 

 Higher education institutions are also starting to combine the relatively 
stable information from academic records with more timely information 
from their campus learning management systems. Learning management 
systems (LMSs) are online systems that support instructors in delivering 
course content and assessments; many LMSs include interactive features 
such as discussion boards. Measures such as the number of days on which 
a student logs in to the LMS compared with other students in their class, 
scores earned on interim assessments within the LMS, engagement with 
course materials, and participation on discussion boards, all measured rel-
ative to other students in the same course, can in certain circumstances be 
used to predict likelihood of completing the course. Combining LMS data 
with other types of data, the firm Civitas Learning has helped several of its 
client institutions identify individuals among their high-GPA students who 
were showing signs of disengagement with college. These high-achieving 
disengaged students had tended to fall through the cracks because they 
did not have obvious markers of course failure in their academic records. 

 Common across all the examples cited previously is the use of data-
intensive research methods for identifying and working to improve edu-
cational processes. In all cases, data helped identify an opportunity to 
improve but the data didn’t solve the problem—that was up to teams of 
people in each education institution. 

 Why Engage in Collaborative Data-Intensive Improvement? 

 In the examples cited previously, the work of identifying problems to 
solve, collecting and analyzing data, and deriving implications is proto-
typical of the work of researchers and educational data scientists engag-
ing in a style of inquiry conducted in concert with educators that we refer 
to as  collaborative data-intensive improvement  (CDI). 

 As the use of digital learning environments in schools increases and 
more and more data are captured in administrative data systems, research-
ers and data scientists who can support CDI may increasingly be called 
upon to not only extract meaning from data but also to structure specific 
activities before and after developing data products. These before and after 
activities are critical, as they help partnerships translate what is learned 
from a data-intensive analysis into specific actions that can be used to 
solve local problems of practice (Krumm, Waddington, Teasley, & Lonn, 
2014). 
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 Along with the growing evidence for the benefit of combining data-
intensive research with specific efforts to improve teaching and learning, 
three trends give us optimism that the time is ripe for engaging in data-
intensive research in education, and in particular, CDI: 

 •   Lessons learned from the data driven decision-making movement   .  
For decades, schools have been pressed to use data to drive their 
instructional and organizational decision making. Multiple scholars 
have examined what worked and what didn’t from this period, and 
as a field, we are moving beyond viewing data as inherently action-
able or as a self-activating resource. 

 •   Increased role and importance of research–practice partnerships.   
Both private philanthropies and federal agencies are supporting this 
trend by providing funding for collaborations between researchers 
and practitioners. Pioneering efforts from organizations, such as the 
Carnegie Foundation for the Advancement of Teaching, are provid-
ing useful models for how these partnerships can work ( Coburn & 
Penuel, 2016 ). 

 •   The availability of data and the need to interpret them responsibly.   
Data of increasing size and variety are available as never before. With 
this growing resource will come a need to structure appropriate anal-
yses, draw appropriate conclusions, and structure follow-on activities. 

 Engaging in CDI opens up unique possibilities for researchers and edu-
cational data scientists; education leaders and practitioners; and technol-
ogy developers. 

  For researchers and educational data scientists  who want to see their 
work improve the quality of education and the equity of opportunities 
that students receive, collaborative forms of data-intensive research offer 
opportunities to directly experience and participate in the improvement 
process. Researchers are accustomed to publishing their analyses and 
research conclusions in technical reports and scholarly journal articles, 
which are often not read by the education decision makers and practi-
tioners responsible for the educational experiences that students actually 
receive. Even when a study does get wide publicity in the general press or 
in venues where educators gather information, such as their professional 
conferences or periodicals, a research report is not self-explanatory; 
understanding how to apply an insight from research to a new context 
is challenging for researchers and practitioners alike. By directly engag-
ing with practitioners in a partnership, researchers have the opportunity 
to see their work put to use in real learning environments in ways they 
believe are well reasoned and likely to be successful. 

  For education leaders , engaging in data-intensive work with research-
ers offers an opportunity to increase the likelihood of ameliorating an 
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important problem of practice by applying a systematic set of tools 
and approaches and enlisting additional intellectual resources in the 
form of researchers and data scientists. The magnitude of improvement 
that is possible has been demonstrated by the Carnegie Math Path-
ways from the Carnegie Foundation for the Advancement of Teaching, 
which we will describe throughout this book. In some cases, university 
systems and school systems eager to apply data-intensive approaches 
to their improvement efforts are funding the work of their external 
collaborators directly ( Treaster, 2017 ), but in other cases researchers 
have their own funding to support their participation ( UT Arlington 
News Center, 2014 ). 

  For teachers and instructors , CDI complements a commitment to the 
scholarship of teaching and learning. This form of scholarship entails 
reflective inquiry into student learning in specific academic domains 
and seeks to generate insights that improve teaching and thereby 
enhance student learning ( Hutchings, Taylor Huber, & Ciccone, 2011 ). 
Lee Shulman, one of the early advocates for this form of inquiry, offers 
three rationales for this kind of work that are equally applicable to 
CDI ( Shulman, 2000 ). First, there is professionalism, which Shulman 
describes as the “inherent obligation” entailed in being a professional 
educator and in representing the discipline one teaches. Second, there 
is the pragmatic rationale: An educator should strive to make sure 
that his or her work is constantly improving and enabling students to 
meet their learning goals. Finally, there is the need to be able to dem-
onstrate to external authorities such as administrators, school boards, 
and accrediting agencies that one’s teaching is adding value for students 
and improving over time. CDI can enhance the scholarship of teach-
ing and learning by convening collaborators with diverse expertise and an 
expanded set of methods. 

  For learning technology developers , participation in the types of part-
nerships and collaborations described in this book can be used to expand 
their internal capacity for research and analytics as well as gathering new 
insights into issues surrounding the implementation of their products. 
Collaborating with researchers and practitioners can help technology 
developers gain a fuller understanding of the things that are important 
to teachers—their potential customers—and to supporting student learn-
ing. Moreover, if they design their learning system with the idea of being 
able to provide data collection and storage infrastructure that can be 
later analyzed efficiently, they will be better prepared to drive future 
enhancements of their products. We have found that a surprising num-
ber of learning technology products are developed and marketed widely 
without the capability to capture the kind of data that can inform teach-
ing and learning. If developers understand how data captured by their 
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technologies can be used to improve teaching and learning, they can be 
better equipped to collect and store data that can support continuous 
improvement of their products and how they are used. 

 Contents of This Book 

 This book seeks to support both researchers, practitioners, and develop-
ers in applying data-intensive research methods to improve learning envi-
ronments. Our goal is to offer scaffolds that a team can use to develop a 
research–practice partnership and use data with the rigor needed to make 
meaningful progress. 

 This introduction to our approach for merging data-intensive research, 
improvement science, and educational research will be followed by a 
description of the kinds of data that are available for use within research–
practice partnerships in  Chapter 2 .  Chapter 3  then introduces analyti-
cal techniques used in data-intensive research projects at an introductory 
level. In  Chapter 4 , we discuss issues of data privacy and security as well 
as approaches for using student data for research and improvement pur-
poses. In  Chapter 5 , we describe the influences that have fostered an 
increased reliance on data and evidence in educational decision making 
and various conceptions of how researchers and education practitioners 
should work together in greater detail. These traditions influenced our 
own research and provided a foundation for our model of CDI. Using 
two cases,  Chapter 6  presents our CDI model and discusses key assump-
tions of the model.  Chapter 7  provides a deep dive into CDI practices and 
tools, presenting five phases for implementing this kind of work. Finally, 
we conclude in  Chapter 8  with a summary of some of the key things we 
have learned from our work and the work of others and an explication 
of trends that are likely to shape future applications of data-intensive 
research in education. 
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 As early as the 1960s, computers began to fascinate educators. One of 
the first broadly implemented computer-based learning systems, PLATO 
(Programmed Logic for Automatic Teaching Operations), arrived 9 years 
before the first ARPANet transmission—the forerunner of the Internet—
and 17 years before the Apple II popularized personal computing. As 
computers branched out beyond the realms of banking and scientific 
calculations and into personal applications, the idea of using computers 
to support teaching and learning gained widespread acceptance ( Cuban, 
1986 ). While interest was sparked early on, it took many years for tech-
nologies to become widely adopted and implemented with any depth in 
schools and universities ( Collins & Halverson, 2009 ;  Krumm, 2012 ). 
The story of technology integration in educational organizations inter-
sects with data-intensive research in important ways: Some of the first 
technologies to be broadly adopted—learning management systems and 
intelligent tutoring systems—represent key touch points for the fields of 
learning analytics and educational data mining, respectively ( Baker & 
Siemens, 2014 ). 

 Turning data into knowledge has until very recently been a manual 
activity (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Manual analysis 
has been the norm in schools and universities since the dawn of the Pro-
gressive era and the proliferation of Scientific Management practices 
( Tyack & Cuban, 1995 ). In more recent times, increased use of technol-
ogy has led to the collection and storage of data that push on the capabil-
ities of most manual approaches. In addition, as the volume of data has 
increased, so too has the need to combine data from across multiple tech-
nological platforms, like administrative data systems and digital learning 
environments, to better understand the processes and outcomes of teach-
ing and learning. As combining data becomes more important, computer-
based techniques are often required to merge, process, and analyze these 
data, all in an effort to unlock potential insights. 

 In this chapter, we introduce two of three foundational topics related to 
data-intensive research in education— data  and  workflow . In  Chapter 3 , 

 Chapter 2 

 Data Used in Educational 
Data-Intensive Research 
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we discuss the third foundational topic—analytical  methods . None of 
these topics is unique to data-intensive research  per se . For example, a 
workflow is a job-specific set of processes that transform inputs into 
outputs. All research involves some type of workflow—collecting data 
and analyzing it using recognized methods (i.e., inputs) to generate new 
knowledge (i.e., outputs). Over the next two chapters, we emphasize what 
is distinctive about data-intensive research across these general topics. 

 In what follows, we begin by outlining three general types of data used 
in educational data-intensive research. While we describe each some-
what in isolation, in practice, and in many of the examples that we cite, 
researchers regularly find value in combining different types of data. 
Following our discussion of three types of educational data, we discuss 
unique opportunities and challenges associated with using educational 
data as part of a data-intensive project. Based on our descriptions of three 
data types, we then introduce a generic workflow that outlines the ways 
in which data from multiple sources can be analyzed, interpreted, and 
translated into change ideas that are taken up as part of a formal research 
study or local improvement project. 

 Types of Educational Data Used 
in Data-Intensive Research 

 In this section, we describe three broad types of data that are perhaps best 
characterized by the technologies in which they are captured and stored: 
(1) digital learning environments, (2) administrative data systems, and 
(3) sensors and recording devices. Data from  digital learning environ-
ments , perhaps more than any other, have fueled data-intensive research 
in education (Roschelle & Krumm, 2015;  Winne, 2017 ). Games, simu-
lations, and tutoring systems as well as the increased amount of teach-
ing and learning that is occurring through online courses and Massively 
Online Open Courses (MOOCs) are all creating more and more data on 
more and more students. 

 A second type of data fueling data-intensive research in education 
comes from  administrative data systems . These systems are used in schools 
and districts as well as at the level of state and federal governments in 
the United States to collect and store information associated with deliv-
ering some type of service ( Figlio, Karbownik, & Salvanes, 2017 ). For 
example, with investments from the U.S. Department of Education, states 
throughout the U.S. have created statewide longitudinal data systems that 
collect and store data on individual students over time. Data stored in 
these systems can include standardized test performances, attendance, and 
major behavioral infractions. Increasingly potent as tools for research, 
administrative data systems are creating opportunities for researchers and 
interested practitioners to jointly interpret data to both improve services 
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as well as answer questions that are useful to the broader research com-
munity ( Connelly, Playford, Gayles, & Dibben, 2016 ). 

 Lastly, as data from digital learning environments have been increas-
ingly collected and stored, so too are data being collected from  sensors 
and recording devices , such as video and audio data. Sensor and record-
ing device data have increased in availability through newly developed 
instruments that capture biometric data and the ability to parse audio 
and video recordings using machine learning and artificial intelligence 
techniques. In education, data from sensors and recording devices have 
been combined with data from digital learning environments, like intelli-
gent tutoring systems (e.g.,  Bosch, Chen, Baker, Shute, & D’Mello, 2015 ). 
These multiple data streams have been blended together to advance 
researchers’ understanding of student learning and factors affecting 
learning over time within these environments. 

 Digital Learning Environments 

 In the following sections, we highlight three digital learning environments 
based on the degree to which they are used in schools and universities and 
in their prominence in the research literature: intelligent tutoring systems, 
learning management systems, and MOOCs. 

 Intelligent Tutoring Systems 

 An intelligent tutoring system (ITS) is a type of digital learning environ-
ment that applies artificial intelligence to students’ interactions with the 
system. ITSs often employ three  models  that drive the adaptations that a 
system makes based on a student’s input: (1) an expert, or  domain model , 
which organizes the skills and strategies in the domain, (2) a  student 
model  of what a student understands about the domain that is inferred 
from their performances on learning tasks and (3) an  instructional , or 
 pedagogical model , of common mistakes and misconceptions along with 
a corresponding feedback strategy ( Anderson, Corbett, Koedinger, & Pel-
letier, 1995 ). ITSs collect information on students, their progress in the 
system, and interactions that they engage in during a learning task. ITSs 
provide feedback to students in the form of hints, strategies, and dif-
ferent ways to practice the skills on which they need help ( Razzaq & 
Heffernan, 2006 ). The same data that the ITS uses to figure out how 
to respond to a student’s actions can also be used by human analysts 
to gain a detailed picture of learning processes and the behaviors learn-
ers engage in ( Baker, 2016 ). For example, work by Baker and colleagues 
( Baker, D’Mello, Rodrigo, & Graesser, 2010 ) illustrate how data from 
ITSs can be used to detect a variety of behaviors and affective states such 
as boredom and frustration. These studies help in building knowledge 
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related to how students learn as well as support potential improvements 
to the ITSs themselves (e.g.,  Roll et al., 2006 ). 

 Learning Management Systems 

 LMSs are “web-based systems that allow instructors and students to share 
instructional materials, make class announcements, submit and return 
course assignments, and communicate with each other online” (Lonn & 
Teasley, 2009, p. 686). As noted previously, LMSs, along with ITSs, helped 
give rise to the fields of learning analytics and educational data mining, 
respectively. LMSs typically collect information on learning resources 
(e.g., digital files posted by an instructor) that students accessed and when 
they accessed them as well as when students accessed an assessment and 
how well they did on the assessment. Currently, LMSs are more widely 
used in higher education than in K–12, and they tend to be adopted on 
a campus-wide basis with the intent that all online and blended courses 
offered by a college or university are supported by the same LMS. Using 
data collected and stored by a campus’s LMS,  Krumm (2012 ) examined 
approximately 20,000 courses taught at the University of Michigan. 
Major takeaways from these analyses revealed that most instructors use 
relatively few tools that are provided by the LMS but that factors such as 
the college one teaches in and the enrollment size of the course can affect 
the number of tools used. In general, instructors favor using tools that 
make their teaching more efficient as opposed to rethinking how they 
teach ( Lonn & Teasley, 2009 ). Said differently, while LMSs can be consid-
ered widely adopted, they are often not central to teaching and learning. 
However, when these systems are more central to instruction, researchers 
have found ways to use data from these systems to drive early warn-
ing systems. One such tool that allows instructors to provide feedback 
to students based on their interactions with an LMS is Course Signals, 
which was originally developed and deployed at Purdue University (see 
 Arnold & Pistilli, 2012 ). 

 Massive Open Online Courses 

 When MOOCs burst onto the higher education scene in 2010, course 
enrollments reached hundreds of thousands of students ( Means, Bakia, & 
Murphy, 2014 ). Critics have been quick to point to the relatively small 
percentage of enrollees who actually completed these free online courses, 
and the hype around MOOCs has abated. Nevertheless, the MOOC 
learning platforms designed for very large enrollments, such as Coursera 
and edX, have endured, with large numbers of people taking courses 
on these platforms, including for academic credit. The data generated 
as thousands of learners use these platforms in a single course continues 



20 Data Used in Data-Intensive Research

to be a major source of data for researchers (e.g.,  Evans, Baker, & Dee, 
2016 ;  Gasevic, Kovanovic, Joksimovic, & Siemens, 2014 ;  Ho et al., 2015 ; 
 Zhu et al., 2016 ). As these systems evolve, they continue to develop new 
features and functionality that capture granular data closer to ITSs than 
LMSs (e.g.,  Aleven et al., 2017 ). 

 Administrative Data Systems 

 A second type of data fueling data-intensive research in education stems 
from  administrative data systems . These systems are used at school and 
district levels as well as at the level of entire states. In this section, we 
describe two types of administrative data systems: student information 
systems and statewide-longitudinal data systems. 

 Student Information Systems 

 Student information systems (SISs) are digital systems used by schools and 
universities to store student-level information. They are, in many ways, 
the central data repositories for educational organizations as they collect 
and store multiple data elements on students, including demographics, 
attendance, and academic performances. SISs are different from learning 
management systems, but the two can be integrated. While LMSs are often 
used as student-facing repositories of digital resources and activities, SISs 
are teacher- and administrator-facing repositories of student demographic 
and learning-outcome data. SISs play a key role in data-intensive research 
because they offer a ready source of data on educational outcomes (e.g., 
grades) and demographic information, which can play a role in evalua-
tions of technology-based interventions as well as early warning system 
research (e.g.,  Bowers, Sprott, & Taff, 2013 ). 

 Statewide Longitudinal Data Systems 

 In 2005, the U.S. Department of Education began giving grants to states 
to develop statewide longitudinal data systems (SLDSs). Among the 
requirements for SLDSs developed with these funds was the use of a 
unique statewide identifier for every student; storage of each student’s 
demographic characteristics and enrollment history and scores on state 
accountability tests; and the ability to link the student’s K–12 data with 
the state’s higher education data system. According to the National Cen-
ter for Education Statistics, by 2015, 84 percent of statewide longitudinal 
data systems contained unique student identifiers, 88 percent contained 
demographic and enrollment history data, and 57 percent could link to 
higher education data systems. For the first time, there was a data infra-
structure in a majority of states that provided the potential to examine, 
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for example, educational outcomes at the scale of an entire state. State 
level and university-based researchers increasingly leveraged these data 
for both accountability and reporting purposes as well as district-and 
school-improvement purposes.  Knowles (2016 ), for example, used data 
from Wisconsin’s SLDS to develop an early warning system for students 
at risk of dropping out of high school. 

 Sensors and Recording Devices 

 As data from digital learning environments have been increasingly col-
lected and stored, so too have data been collected from  sensors and 
recording devices . Location, physical movement, and speech can all be 
tracked and analyzed using a variety of different sensors—small, often 
single data stream devices. Fitness sensors that measure, for example, 
steps taken or heart rate have been used in educational contexts to pro-
mote healthy behavior changes in youth (e.g.,  Schaefer, Ching, Breen, & 
German, 2016 ). Thus, sensor and recording device data have increased 
through instruments that capture biometric data, which are quantifica-
tions of an individual’s physical activity. Moreover, the ability to parse 
audio and video recordings using machine learning and artificial intel-
ligence techniques has opened up opportunities to analyze familiar forms 
of data, such as audio and video files, at larger and larger scales. Hand in 
hand with different algorithms have been multiple advances in collection 
and storage of these data in various digital formats ( Baker & Siemens, 
2014 ). 

 An important recent advance involves blending multiple data streams 
from sensors, recording devices, and digital learning environments (Blik-
stein, 2013; Liu, Davenport, & Stamper, 2010). Merging, or fusing, data 
from multiple systems can allow researchers to identify patterns across 
the different data streams that have been brought together. These  multi-
modal  investigations are providing new insights into basic factors affect-
ing learning (e.g., Woolf et al., 2009). Understanding what learners do 
as they engage in learning tasks can drive digital learning environment 
adaptations. Recent work suggests that combining sensor data with 
data from digital learning environments can support accurately iden-
tifying multiple affective and engagement-related states ( e.g.,   D’Mello, 
Dieterle, & Duckworth, 2017 ). 

 In the same way that data from sensors can be used to measure spe-
cific behaviors over time, audio and video recording data can be used by 
to detect facial expressions (e.g., Bosch, D’Mello, Ocumpaugh, Baker, & 
Shute, 2016) and body language (e.g.,  Grover et al., 2016 ). Audio data can 
be used for speech recognition, and even without analyzing the meaning 
of the recorded utterances, speech prosody (i.e., stress and intonation) 
can be used to make inferences about the emotional state of speakers. 
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For example,  D’Angelo et al. (2015 ) are building speech-based learning 
analytics for collaboration that can support teachers to identify what 
is occurring in small groups, thereby enabling teachers to direct their 
attention to less well-functioning groups. Pilot data have shown that 
combining speech activity (i.e., who is talking when) with the actions of 
collaborators in digital learning environments can identify turn-sharing 
and frustration. 

 Characteristics of Educational Data 

 The three types of education data described previously are intended to 
be overarching categories with which to think about the rapidly expand-
ing types of data used to understand and improve teaching and learning. 
As can be seen in the previous examples, many researchers and research 
groups combine data from across these categories, and much of what are 
considered  big data  in education fall into one or more of the categories 
described previously. But what exactly are big data? Many scientific dis-
ciplines work with large, complex datasets ( Dede, 2015 ), and the term 
big data is a relative and regularly shifting assessment of “datasets whose 
size is beyond the ability of typical database software tools to capture, 
store, manage, and analyze” ( Manyika et al., 2011 ). In a similar way, 
 data-intensive research  is a relative term that speaks to both the data 
and the research field in which the data are collected and analyzed. By 
current standards, datasets used in educational data-intensive projects 
have hundreds of thousands or millions of observations or hundreds or 
thousands of  features . Depending upon the analytical method used, many 
of these datasets require software and hardware with specific capabilities 
to analyze, and the specific hardware and software will vary depending 
upon the ultimate purposes one has for an analysis. 

 In our own work, we regularly draw on data from LMSs and SISs. 
And over the years, we have developed a degree of familiarity with how 
to wrangle, explore, and model these types of data. Data from LMSs are 
often similar to one another but different from other types of educational 
data one could use in a data-intensive research project. Reasons for why 
these data are similar to one another but different from other types of 
data involve (1) the tasks that students are engaged in and (2) how data 
from those tasks are collected and stored by the technology. As noted pre-
viously, the types of data that are most often collected from LMSs include 
learning resources selected and when, as well as learning activities, such 
as assessments completed and when. These data can be substantively dif-
ferent from, for example, game-based learning environments because, at 
multiple levels, the types of activities that students are engaged in within 
a digital game are often dramatically different from an LMS ( e.g.,   Owen, 
Ramirez, Salmon, & Halverson, 2014 ). Thus, working with and making 
sense of data require becoming familiar with the activities of the digital 



Data Used in Data-Intensive Research 23

learning environment as well as the ways in which data from those activi-
ties are captured and stored for later use. 

 As one explores data from different technologies, one is likely to expe-
rience both structured and unstructured data—as well as variations in 
between. Structured data does not have a precise definition. In general, it 
is any kind of data organized into a table with rows and columns. There-
fore, structured data have an explicit organization, and more often than 
not, structured data are housed in well-defined relational databases. One 
of the benefits of structured data is that they can more easily be manipu-
lated and analyzed than unstructured data, such as large segments of text, 
audio, and video. While similarly lacking a precise definition, what makes 
unstructured data  unstructured  is that it does not have an explicit, pre-
defined organization. Thus, tabular organization must be provided after 
the fact, often requiring significant wrangling and pre-processing. For 
example, when assessing samples of student writing, each sample needs 
to be converted into a list of numeric features, many thousands of them, 
each of which captures a different characteristic (Rutstein & Neikrasz, 
2016). These numeric features can then be modeled using supervised 
machine learning algorithms across training and testing data. Known 
outcomes from individuals who scored the same writing samples train 
an algorithm. After adequate training and testing, the algorithm can be 
put into production in order to score new, unseen texts.  Figure 2.1  illus-
trates this workflow. The latter part of this workflow is made possible by 
providing tabular, numeric structure to the previously unstructured data. 

Figure 2.1 Training and Scoring Phases in an Automated Text Scoring Engine (ATSE)
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 Oftentimes, discussions of big data in education mention anywhere 
from 3 to 7 “Vs”: volume, velocity, variety, veracity, variability, visualiza-
tion, and value (e.g., van Rijmenam, 2013). The intent of these Vs is to 
help distinguish the types of data one is likely to use in data-intensive 
research as opposed to more traditional modes of inquiry. The four Vs 
that are most germane to data as opposed to how the data are used include 
volume, velocity, variety, and veracity. Volume is about the amount of 
data available, which is often affected by the number of observations, the 
number of features per observation, or both. Velocity addresses the rate at 
which data are generated; for example, every click that a student makes 
within a digital learning environment can lead to a rate of multiple clicks 
per minute, and over multiple minutes spread out over multiple days, vol-
ume and velocity can become closely related ideas. Variety describes the 
different types of observations, or events, that can be gleaned from a tech-
nology. For example, a digital game environment, from the same session, 
can continuously track a player’s screen coordinates as well as specific 
interactions within the game environment, all of which can lead to highly 
variable data over time. Veracity captures the degree to which a user can 
trust data. There are no standard units of measure for veracity, but data 
can be untrustworthy for a variety of reasons. For some administrative 
data systems, individuals inputting the data can use the system differently 
than intended, which means end-users of the data, such as researchers, 
need to understand as deeply as possible how and why data are entered 
into and stored within a system ( Figlio et al., 2017 ). 

 To ground the four Vs in an educational example, as a researcher, 
imagine working with several high schools in a large district to help them 
in identifying patterns in students’ attendance over time. Instead of look-
ing at whether a student was present or absent for the entire school day, 
the participating high schools are interested in the patterns that manifest 
by following individual students over time on a period-by-period basis. 
Teachers in participating high schools recorded whether or not a student 
was present across seven instructional periods, which yields seven mea-
sures per day, per student. For 6,000 students across the high schools, 
this would create a table with over 7.5 million cells for a 180-day school 
year. Following a single cohort of students from grades 9 through grade 
12, then, would produce over 30 million unique observations that could 
be mined to look for patterns in which classes are missed most often and 
the relationships between missing class and overall school performance. 
Over a four-year period, the  volume  of a final dataset, depending upon 
when downloaded and analyzed, will reach the numbers identified previ-
ously. The  velocity  of these attendance data could best be thought of as 
hourly (i.e., at least during a typical school day). Importantly, these data 
are marginally low variety in the form of “present” or “not present” for a 
given hour of the day, such as “Period 1.” If one is interested in the specific 
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courses a student was present or absent for, such as “Period 2 Geometry,” 
this level of detail increases the variety.  Veracity  is about the degree to 
which one can trust a row, column, or cell of data. For example: what 
does it mean to be counted as “late” for a class? The rule that defines 
lateness may or may not match the expectations of end-users of the data. 

 The four Vs described previously offer useful ways of thinking about 
characteristics of big data, but these characteristics may not ultimately 
address what can be unique about educational data used in a data-
intensive research project. What is unique about working with educational 
data, especially within the context of formal schooling environments, is 
the interaction between the technology and the environment in which 
the technology is used. Focusing on the technology, we have noted the 
importance of the  tasks that students engage in  within a digital learning 
environment as well as the ways that  data from those tasks are collected 
and stored  by the technology. A rich digital learning task that does not 
capture granular data on what students do within the task, by definition, 
will not be useful for data-intensive research as requisite data are not col-
lected. Less rich tasks that capture data on what students do, on the other 
hand, may also not be useful for data-intensive research as these data 
often fall victim to the garbage in, garbage out principle ( Mislevy, Beh-
rens, DiCerbo, & Levy, 2012 ). Rich tasks that are specifically developed 
so that students can generate meaningful events represent the best initial 
set of technology-specific circumstances for analyzing educational data 
( Schwartz & Arena, 2013 ;  Shute & Ventura, 2013 ). However, technolo-
gies are not used in a vacuum—when taken up in schools, a technology 
will be used by students and teachers who can have different goals from 
those of the technology’s developer. 

 Two other characteristics of educational data based on the interaction 
between a technology and the environment in which it is used include 
 coverage  and  centrality . Coverage as we use the term denotes the number 
of students within an educational organization who use a given technol-
ogy from which data are collected. Centrality denotes the degree to which 
the technology is used as a core element, or facilitator, of instruction, i.e., 
how students interact with one another, the instructor, and content to be 
learned ( Cohen, Raudenbush, & Ball, 2003 ). Coverage can be important 
because a technology from which data will later be used may in fact not 
be used by large numbers of instructors or students. Fewer students or 
more narrow groups of students (i.e., two dimensions of coverage) will 
dramatically affect the claims a researcher may seek to make based on 
the particular coverage of a technology he or she is analyzing. Given the 
diversity of content areas and instructional approaches in schools, the 
types of technologies with the most coverage by default tend to be those 
that facilitate more generic instructional interactions, such as accessing 
resources and submitting assessments. LMSs are a prototypical example 
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of a broad coverage, generic technology as they can be used in all content 
areas and nearly all grades. Other technologies that offer high degrees of 
coverage include administrative data systems, as they track similar data 
elements for nearly all students. 

 Coverage and centrality, much like the four Vs described previously, 
are not inherently positive or negative characteristics. Broad coverage 
and non-central data from student information systems largely fuel early 
warning system research and development. Highly central technolo-
gies that have broad coverage are rare. One challenge in working with 
broad coverage systems like LMSs is that there are often large amounts of 
variation across educational units, such as classrooms and courses, using 
the technology. Given these differences, data from broad coverage tech-
nologies often necessitate that special attention be paid to unit-to-unit 
differences. 

 Task richness and how data are collected from tasks; coverage and 
centrality; the 4 Vs; and traditional considerations of quality educational 
research, such as overall research design, all factor into using educational 
data for data-intensive research. Building on these general characteristics, 
we now turn our attention to practical concerns around accessing and 
sharing educational data. 

 Challenges and Opportunities in Working 
With Educational Data 

 There are multiple challenges as well as opportunities in working with 
educational data. Opportunities include building new knowledge as well 
as engaging in practical school improvement work—and new ideas yet to 
be developed. Data from digital learning environments as well as sensors 
and recording devices offer unique opportunities because they can be 
used to measure educational  processes  as they unfold over time. A core 
tenet of improvement is that changes in outcomes are dependent upon 
changes in processes ( Langley et al., 2009 ). As many of the articles cited 
previously demonstrate, rigorous analyses of process data can also be 
used to build new understandings of how people learn. While there are 
a number of opportunities, privacy and security remain large and loom-
ing challenges in working with educational data. In  Chapter 4 , we detail 
many of these issues. For the purposes of understanding the types of data 
introduced previously, in this section, we describe several challenges and 
opportunities facing researchers in working with educational data as part 
of a data-intensive project. 

 A big challenge involves working with data from across multiple tech-
nologies, such as digital learning environments and administrative data 
systems. Issues of different identifiers used across technologies as well 
as duplicated entries can make merging datasets a labor-intensive and 
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sometimes error-prone activity. A related challenge to this is making sure 
that the right students are present in the right datasets, which is often most 
noticeable after different datasets have been merged together. The integ-
rity of samples of students directly implicates the veracity of educational 
data used in data-intensive research, as we described previously. The data 
a researcher eventually analyzes depends upon the business rules of the 
database as well as the informal rules around how individuals input and 
make use of data within these systems. For example, what counts as an 
“enrolled student” in a college course that uses an LMS can be far from 
clear-cut using LMS data alone. Thus, for projects geared toward predict-
ing students who are likely to drop out of a course, corroborating data 
from across multiple sources can become a critical activity. Ultimately, it 
is where intended and actual uses for a technology conflict that working 
with data from across multiple datasets can prove problematic because 
intended uses are easy to communicate through data dictionaries and 
other written materials—informal and non-standard uses, less so. 

 Solutions to some of these challenges have included services offered 
by for-profit companies and industry groups that support normalizing 
student rosters across technologies (e.g., Clever and OneRoster). Other 
approaches include growing numbers of educational organizations devel-
oping and housing more and more data in data warehouses, which often 
contain common identifiers across databases. Moreover, there are grow-
ing standards movements that are intended to help create more com-
mon data models for administrative data systems (e.g., Ed-Fi Alliance) 
and digital learning environments (e.g., Experience API, Caliper). In gen-
eral, these efforts address  interoperability ; programs such as the Schools 
Interoperability Framework (SIF) and Common Education Data Stan-
dards (CEDS) have emerged from consensus among vendors on how data 
can be exchanged across systems. 

 Accessing Data 

 A challenge for both new and experienced researchers and educational 
data scientists is accessing data. State departments of education and indi-
vidual school districts, starting in the early 2000s, began using adminis-
trative data systems and making their data available to researchers for 
well-defined research purposes. Once in the hands of researchers, these 
data were analyzed, reported on, and oftentimes destroyed in line with 
more or less well-defined data-use agreements. In many ways, data has 
been open to researchers with legitimate research purposes for a long 
time. Similarly, data collected by a digital learning environment could be 
accessed and analyzed by researchers with legitimate research purposes. 
In education and the physical and social sciences more generally, there 
is a growing movement where various datasets are being made publicly 
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available. These efforts are moving data from servers once only acces-
sible by researchers into public repositories that are creating opportu-
nities for researchers to explore new questions and individuals new to 
data-intensive research in education to develop skills using often highly 
structured and well-documented datasets. 

 Under the labels of “open data” and “reproducible science,” a variety 
of data sources are being opened up to broader audiences. The basic idea 
behind the open data movement is that anyone can access or use a dataset, 
and key to this movement is not just accessibility but usability. Making 
open data usable means making it accessible in machine-readable, struc-
tured, granular, and well-documented formats. On a case-by-case basis, 
individual research projects have made data available to external audi-
ences (e.g., the Study of Instructional Improvement at the University of 
Michigan). These efforts can support replication of results as well as new 
explorations. Researchers in other sciences have proposed principles for 
enhancing the reproducibility of those results that are based on compu-
tational methods. They argue that while sharing data is useful, unless the 
computational software and workflow are also made available, the “com-
putational reproducibility” of the findings cannot be assured. “Access to 
the computational steps taken to process data and generate findings is as 
important as access to data themselves” ( Stodden et al., 2016 , p. 1240). 

 The rise of structured, machine-readable data permits researchers to 
combine information or search for new patterns and new insights. The 
National Center for Education Statistics (NCES) is another resource for 
a variety of accessible, well-documented datasets (e.g., the Common Core 
of Data). More recently, datasets from tutoring systems and large online 
courses (e.g., MOOCs) are also being used in this way. For example, 
Harvard and MIT, in 2014, released de-identified data from open online 
courses, containing the original learning data from the 16 HarvardX and 
MITx courses offered in 2012–13 ( Ho et al., 2015 ). Researchers at the 
Pittsburgh Science of Learning Center have developed and maintained 
the “world’s largest repository of learning interaction data” in DataShop 
( Koedinger et al., 2010 ). DataShop contains data from multiple online 
educational environments, is open access, and is designed to provide 
researchers with a place to share data as well as analytic tools. 

 Data-Intensive Research Workflow 

 The forerunner to data-intensive research, and therefore learning ana-
lytics and educational data mining, is a field of inquiry referred to as 
knowledge discovery in databases (KDD). The phrase was initially used 
in the late 1980s, and it was coined to emphasize that knowledge was the 
key outcome of any data-driven inquiry. From the outset, KDD referred 
to an overall workflow: “data preparation, data selection, data cleaning, 
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incorporation of appropriate prior knowledge, and proper interpretation 
of the results of mining, are essential to ensure that useful knowledge is 
derived from the data” (Fayyad et al., 1996, p. 39). As we noted at the out-
set of the chapter, a workflow is a set of processes that transform inputs 
into outputs across multiple steps and decisions. A key input into this 
workflow consists of the types of data detailed previously. In this section, 
we introduce a generic workflow that is intended to support research-
ers, practitioners, and data scientists prepare for a data-intensive analysis 
and communicate one’s findings. This workflow is based on workflows 
that have been documented by general data science practitioners (e.g., 
 Guo, 2012 ;  Wickham & Grolemund, 2017 ) as well as workflows that are 
based on practitioners’ use of data in schools (e.g.,  Marsh, 2012 ). 

 A common workflow carried out using shared data analysis tools can 
make for efficient, reproducible data-intensive research (see  Figure 2.2 ). In 
 Chapters 6  and  7 , we place this workflow within a broader set of phases 
that we use to help researchers and practitioners organize their collabora-
tion around data-intensive analyses as well as co-developing and testing 
change ideas inspired by their analyses. The workflow described in the 
next sections comprises five steps: (1) prepare, (2) wrangle, (3) explore, 
(4) model, and (5) communicate. In  Chapter 3 , we go more in-depth into 
steps 2–4. 

 Prepare 

 First and foremost, data-intensive research involves defining and refining 
one or more research questions. Having a clear set of research questions 
helps a team identify what data to collect and formulate potential analyti-
cal strategies. Along with clear questions, it can be useful to identify what 
gets collected and stored by a technology—not all potentially useful data 
are collected by a technology and not all data collected by a technology 
are useful. In an education context, understanding the  activity system  in 

Figure 2.2 Steps of Data-Intensive Research Workflow
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which a technology is used can be crucial for ultimately making sense of 
data, in particular from digital learning environments ( Roschelle, Knud-
sen, & Hegedus, 2009 ). Some instructional activity systems can include, 
among many factors, the actions and intentions of teachers and the goals 
that they have for students—from serving as a reward to students for 
completing work early to providing students’ primary interactions with 
a course’s content. All of these uses for a technology can affect the con-
clusions one can draw from data stemming from the technology as these 
different uses influence which students interact with it in the first place 
as well as what they do within the technology ( Murphy et al., 2014 ). 
Being prepared for a data-intensive analysis, therefore, involves refining 
research questions and developing an understanding of where the data 
come from. 

 Wrangle 

 Wrangling data, sometimes referred to as munging or pre-processing entails 
the work of  manipulating ,  cleaning ,  transforming , and  merging  data. At 
a basic level, manipulating involves identifying, acquiring, and importing 
data into analysis software; cleaning data involves ensuring that each vari-
able is in its own column, each observation is in its own row, and each value 
is in its own cell within a dataset ( Wickham & Grolemund, 2017 ). Data 
cleaning also involves identifying and remediating missing data, extreme 
values, and ensuring consistent use of identifier, key, or linking variables. 
Data wrangling can also involve transforming variables, such as recoding 
categorical variables and rescaling continuous variables. These types of 
transformations are the initial building blocks for exploratory data analy-
sis. Along with manipulation, cleaning, and transforming data, merging 
data is an important component of data wrangling. One of the earliest and 
biggest value-adds that a data scientist can bring to a formal research proj-
ect or local improvement project is merging once disparate data sources. 
For example, merging data from a student information system that stores 
student grades with data from a digital learning environment that stores 
students’ longitudinal interactions within a specific technology can be 
used to unlock the relationships between what students do or do not do 
on a day-to-day basis with how they performed on a longer-term outcome, 
such as a course grade. Merging data on what students do, i.e., process 
data, with how well they do, i.e., outcome data, are the building blocks of 
multiple types of  models , described later. 

 Explore 

 Exploratory data analysis is a widely covered topic that captures some 
combination of  data visualization  and  feature engineering . Data visual-
ization involves graphically representing one or more variables, whereby 
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the goal of data visualization, according to  Behrens (1997 ), “is to discover 
patterns in data that allow researchers to build rich mental models of 
the phenomenon being examined” (p. 154). Discovering patterns in data 
entails generating questions about one’s data, visualizing relationships 
between and among variables, and creating as well as selecting features 
for subsequent data modeling. Feature engineering is the process of cre-
ating new variables within a dataset, which goes above and beyond the 
work of recoding and rescaling variables. For example, using data from 
an ITS,  Baker, Gowda, and Corbett (2011 ) created new features, such as 
 the length of time a student paused after reading a hint .  Veeramachaneni, 
O’Reilly, and Taylor (2014 ) used brainstorming and crowd-sourcing 
techniques to develop features—such as  the difference in grade between 
current lab grade and average of student’s past lab grade —that were used 
to predict when students would stop actively participating in a MOOC 
course. Feature engineering draws on substantive knowledge from theory 
or practice, experience with a particular data system, and general experi-
ence in data-intensive research. 

 Model 

 Modeling involves developing a mathematical summary of a dataset. There 
are two general types of modeling approaches: unsupervised and super-
vised learning. Unsupervised learning algorithms can be used to understand 
the structure of one’s dataset. Supervised models, on the other hand, help 
to quantify relationships between features and a known outcome. Known 
outcomes are also commonly referred to as labels or dependent variables. A 
known outcome can include longer-term results of complex processes, such 
as dropping out of high school ( Knowles, 2016 ), or shorter-term results like 
being off task ( Hershkovitz, Baker, Gobert, Wixon, & Sao Pedro, 2013 ). 
Features used in a supervised learning model can also be referred to as 
predictors or regressors. Other names for features include attributes, inde-
pendent variables, or simply—variables. 

 Unsupervised learning algorithms are often characterized as exploratory 
because unlike supervised learning models, they cannot be easily evaluated 
against a ground truth, or known outcome. When using supervised learn-
ing models, on the other hand, one can test a model’s predictions against 
known outcomes. Supervised learning, or predictive modeling, involves 
two broad approaches: classification and regression. Classification algo-
rithms model categorical outcomes (e.g., yes or no outcomes); regression 
algorithms characterize continuous outcomes (e.g., test scores). A model, 
the result of model- ing , can refer to either a general algorithm or a par-
ticular algorithm that has been applied to a particular dataset. When used 
to refer to a general algorithm, a model is a set of mathematical rules; in 
specific form, a model mathematically summarizes relationships within par-
ticular datasets ( James, Witten, Hastie, & Tibshirani, 2013 ). 
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 The process of modeling involves both  building  and  evaluation . Build-
ing a model entails selecting features from a dataset and applying one or 
more algorithms to the dataset. Those who build a model are evaluating 
its performance using a variety of techniques, such as bootstrapping or 
cross-validation. Formally evaluating a model involves assessing its per-
formance (i.e., how well it classifies categorical outcomes or predicts con-
tinuous values) on data that were not used to build the model. The steps 
involved in modeling, much like exploratory data analysis, are iterative 
and build on one another over time. 

 Communicate 

 Communicating what one has learned involves  selecting  among those 
analyses that are most important and most useful to an intended audi-
ence. In addition, one must choose a form for displaying that information, 
such as a graph or table in static or interactive form. After creating initial 
versions of data products, research teams often spend time refining or 
 polishing  them, by adding or editing titles, labels, and notations and by 
working with colors and shapes to highlight key points. In addition, writ-
ing a  narrative  to accompany the data products is important and involves, 
at a minimum, pairing a data product with its related research question, 
describing how best to interpret the data product, and explaining the ways 
in which the data product helps answer the research question. These three 
steps—select, polish, and narrate—are intended to create a stand-alone 
data product that the intended audiences can use to inform their work. 

 The workflow cited previously lays out a series of steps for engaging in 
data-intensive research. Having a workflow creates multiple benefits and 
is intended to help both new and experienced educational data scientists 
create more reproducible data products, share analyses with internal and 
external audiences, and provide a structure for updating one’s analyses 
over time. The workflow can help in achieving these goals by providing 
a key set of activities to address and an order in which to address them. 
While each step can and will be engaged in different ways across indi-
viduals and teams, each step represents an important one for almost any 
researcher or data scientist. 

 At the beginning of this section, we presented a somewhat linear move-
ment across these five steps, from left to right in  Figure 2.2 . While there 
is often a great deal of iteration that occurs from wrangling to explor-
ing to modeling, at any given time in a project one can be engaged in 
an activity that is difficult to put into any one step alone. Over time, we 
have come to see the workflow as overlapping activities as much as steps. 
 Figure 2.3  is an alternative rendering of the workflow that captures the 
ways in which activities overlap and can be difficult to disentangle as 
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distinct steps—especially while engaged in a project. For example,  com-
municate , in practice, is not a single step that occurs at the end of a formal 
modeling process. On the contrary, communication is happening through-
out a project, and it is often only a matter of degrees that separates how 
much selecting, polishing, and narrating is involved in preparing for a 
research group’s lab meeting and a formal presentation to a client or part-
ner. Regardless of whether one is engaged in a formal research study or 
local improvement effort, when working with multiple complex datasets 
it is often the case that preparing, wrangling, exploring, modeling, and 
communicating will need to take place in more or less structured ways. 

 Conclusion 

 The increasing use of technology in schools and universities is fueling the 
collection of ever more data on more and more students. Across learning 
environments of all kinds, there are three major sources of data that data-
intensive researchers regularly draw upon: (1) digital learning environments, 
(2) administrative data systems, and (3) sensors and recording devices. In 
this chapter, we introduced a data-intensive research workflow that indi-
viduals and teams can draw on as they work with these types of data. This 
workflow is made up of five steps that address key elements of moving from 
identifying a dataset to producing a data product that answers an important 
question for researchers, practitioners, or both. This workflow will be used 
throughout this book. In the next chapter, we focus on three steps: wrangle, 
explore, and model and describe specific analytical techniques that research-
ers and data scientists can use in carrying out these steps. 

Prepare
Wrangle

Model

Communicate

Explore

Figure 2.3 Overlapping Activities Within the Data-Intensive Research Workflow
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 Data from digital learning environments, administrative data systems, 
and sensors and recording devices have all helped to fuel the growth of 
data-intensive research in education. Yet, data are not the only contribu-
tors to the expanding fields of learning analytics and educational data 
mining—a rapidly expanding set of analytical methods are also support-
ing the growth of data-intensive research in education (Madhavan & 
Richey, 2016). In this chapter, we build on the workflow introduced 
in  Chapter 2  and describe the steps of wrangle, explore, and model in 
greater detail. When paired with a more explicit how-to guide for soft-
ware such as R ( Wickham & Grolemund, 2017 ), Weka (e.g.,  Witten, 
Frank, Hall, & Pal, 2017 ), Python ( VanderPlas, 2017 ), or RapidMiner 
(Kotu & Deshpande, 2014), to name but a few popular data analysis 
tools, this chapter is intended to help researchers organize their use of 
various analytical methods within an overall data-intensive research 
project and to further elaborate on the intuition behind wrangling, 
exploring, and modeling data. 

 Throughout our discussion of various methods, we use a hypotheti-
cal case to illustrate what can be involved at each step. As researchers, 
we regularly work with data from digital learning environments under 
a particular arrangement referred to as a research-practice partner-
ship (RPP, e.g., Penuel & Gallagher, 2017). In most of the RPPs in 
which we work, we collaborate with educational organizations to help 
them learn from their own data and identify new ways to support stu-
dents. Typically, our goal is not to engage in basic research—i.e., the-
ory building—but to engage in more applied research—i.e., problem 
solving—that is informed by and in some cases based almost entirely 
on the needs of practitioners. In  Chapter 5 , we provide a more detailed 
account of the growth in RPPs as a strategy for engaging in educational 
research, and in  Chapters 6  and  7 , we go into more depth on how to 
launch and sustain an RPP organized around a data-intensive research 
project. 

 Chapter 3 

 Methods Used in Educational 
Data-Intensive Research 
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 Hypothetical Case 

 Suppose that, as researchers, we are brought together with leaders of a 
large urban district that is piloting a dual-enrollment math course where 
students can earn both high school and postsecondary credit. In keeping 
with the workflow introduced in the previous chapter, we prepare for this 
project by, first, clarifying a purpose and driving questions for the project 
and, second, understanding the digital learning environment and how it is 
used to support teaching and learning in classrooms. One high school in 
the district is participating in the program, and in its second year, the goal 
is to reduce the number of students who earn a C− or lower in the course. 

 For this small-scale project, we will analyze data from the first year 
of the dual-enrollment course, which served 100 students. Earning a C 
or higher is an important outcome to track and improve upon because 
a grade of C− or lower means that the student cannot count the course 
toward his or her postsecondary degree. Our role in this project is to 
analyze data that were collected and stored in a learning management 
system (LMS) that was used to deliver aspects of the math course. The 
assumption of practitioners in the high school is that the data generated 
on a day-to-day basis, or lack thereof, by students might reveal certain 
patterns that are indicative of students who are not likely to earn a C 
or higher. If these patterns could be identified early in the year, then a 
teacher could work with students sooner and hopefully prevent them 
from earning less than a C in the course. 

 Course content in the LMS is organized into “modules” that comprise 
digital readings, practice activities, and a summative assessment. Each 
module covers a specific math topic and each student has full discretion 
to work on a module at his or her own pace. Students need to complete 
all nine summative assessments in the course. Performance on the assess-
ments, other course assignments, and class attendance all contribute to 
a student’s grade. Students can take the summative assessment multiple 
times, as each summative assessment attempt selects items from a semi-
random item bank. For the first year of the dual-enrollment program, 
the LMS only accurately collected and stored data on students’ summa-
tive assessment taking, which is what we can use, along with students’ 
final grades, to understand factors affecting students’ performances in the 
course and to eventually develop a predictive model that will help teach-
ers identify students earlier in the year. 

 Wrangle 

 At a general level, data wrangling involves some combination of clean-
ing, reshaping, transforming, and merging data ( Wickham & Grolemund, 
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2017 ). Data wrangling can require knowledge of databases as well as data 
analysis software languages like SQL, R, and Python. In certain projects, 
data wrangling skills may be distributed across multiple individuals, such 
as those well versed in SQL and others in software like R. A component 
of engaging in data-intensive research is that oftentimes no one person 
holds all of the knowledge necessary for conducting an analysis ( Piety, 
Hickey,  & Bishop, 2014 ). For many projects, the importance of data 
wrangling is difficult to overstate, as it involves the initial steps of going 
from raw data that can be contained in multiple, distributed tables to a 
dataset that can be explored and modeled. Moreover, an individual’s, or 
a team’s, wrangling skills can make later exploration and modeling more 
efficient. Effective and efficient data wrangling is often programmed or 
scripted, which means that the steps involved in importing, cleaning, and 
merging data are written out as machine-readable commands that can be 
revisited, repurposed, and debugged over time. Data wrangling often runs 
throughout a data-intensive research project. For example, it is critical for 
feature engineering, which is described later on in this chapter. In later 
stages of a project, wrangling can entail extracting, cleaning, and merging 
data products. For example, being able to extract and organize output 
that is the result of, in some cases, the running of hundreds of models can 
aid in communicating findings later on in a project. 

 Clean 

 Rarely are data accessed from an external source received in a form that is 
ready for analysis. Even structured data from well-maintained relational 
databases require cleaning, which involves identifying missing data as 
well as extreme or unexpected values. Thus, after extracting data from 
a source and importing it into a piece of software, cleaning is typically 
the first step in getting to know one’s data. Getting to know one’s data 
also involves determining how a data file is structured in either long or 
wide formats. Using students’ interactions in an online learning system 
as an example, long-form data include multiple observations for one stu-
dent across multiple rows.  Figure 3.1 , for example, illustrates four unique 
observations for student  S1000 . Each row contains a student identifier, 
a module identifier, and a score for a summative assessment. Long-form 
data typically have fewer columns and more rows than wide-form data, 
which is represented on the right-hand side of  Figure 3.1 . For wide-form 
data, each student occupies one and only one row. In the wide-form table, 
individual module assessments (e.g.,  md_01 ) make up the remaining col-
umns, which contain scores in each cell for a given student. Moving from 
long- to wide-form data can go by various names that can be software 
specific, but in general, moving back and forth between long- and wide-
form data is referred to as reshaping one’s data. 
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     As can be seen in  Figure 3.1 , cleaning and reshaping data can reveal 
missing data, which is most noticeable in the wide-form version of the 
data (i.e.,  NA ). Student  S1001 , for example, is missing assessment  md_02 . 
Missing data has long been a topic of discussion, especially in statistics 
( Rubin, 1976 ). Reasons as to why data are missing are key to solving 
potential problems brought on by missing data. When data are missing, as 
with  S1001 , the entire observation can be dropped from a given analysis, 
which can be less than advantageous because dropping observations can 
affect the representativeness of a sample. For students in our case example, 
not completing assignments is important to understanding overall course 
performance, so we do not want to drop students who miss assignments 
from our analyses. Thus, a key topic for many statistical and machine 
learning analyses is  imputation , which involves substituting a missing 
value with another value, allowing the researcher to keep the overall 
observation in an analysis. For example, in  Figure 3.1 , one could impute 
 S1001 ’s score for module assessment  md_02  by replacing the “NA” value 
with the overall average score for  md_02  and myriad other approaches 
(e.g.,  van Buuren & Groothuis-Oudshoorn, 2011 ). While there are many 
imputation approaches one can use, for the purposes of the above exam-
ple, replacing “NA” with “0” allows for keeping the entire observation 
while providing a contextually relevant value. Each imputation approach, 
from the simple to complex, involves tradeoffs of one type or another and 
can be more or less appropriate based on the underlying reasons as to why 
data are missing. 

Figure 3.1 Transition from Long- to Wide-Form Data
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 Data exploration is often a necessary part of data cleaning. When done 
at this early stage, as opposed to the more formal exploratory data analy-
sis step described later, data exploration is typically done to answer a 
basic question,  Does this file meet my expectations?  For example, one 
should expect consistency in the types of values within a given feature, 
such as all values being numeric. Along with common formatting, one 
may expect that values within a feature all fall within the bounds of an 
expected range, and if data are categorical, that values are all within pre-
defined categories. Lastly, data may not meet one’s expectations based 
on the number of observations present in a dataset.  Peng (2016 ) recom-
mends, whenever possible, finding a way to corroborate what is in a 
dataset with outside information. When working with data from schools, 
this regularly involves corroborating the number of students in a dataset 
with, for example, available class rosters and having follow-up conversa-
tions with teachers and administrators. 

 Merge 

 Bringing together, or joining, data from different sources is a critical compo-
nent of most data-intensive research projects. Many data quality issues can 
be identified—or introduced—as one merges data from multiple sources. 
For example, merging can bring to light observations that are missing in 
one dataset but present in another. Merging datasets requires common 
identifiers, often referred to as key variables, across the multiple datasets 
that one is trying to merge. Sometimes different identifiers for the same 
individual are used across datasets. For example, a student’s email address 
may be in one dataset and his or her name may be used in another. In such 
cases, researchers need to create a table, or crosswalk, that aligns all of 
the identifiers for a given individual. Multiple, related issues can surface 
as one seeks to merge data from multiple systems, and for many projects, 
de-identifying a dataset (i.e., removing personally identifiable information) 
is another step that needs to be taken prior to merging files.  Figure 3.2  
illustrates how data stored in a  Course Grade Table  from a student infor-
mation system can be merged with the  Digital Learning Environment Table  
using a  Crosswalk  that aligns a student’s  name  from the  Course Grade 
Table  to the  student_id  used in the digital learning environment. 

     Merging data can create the opportunity to surface insights that were 
not possible by looking only at any one dataset in isolation. For example, 
data from digital environments can contain information on what students 
do on a day-in and day-out basis, and data from an administrative data 
system can contain information on valued outcomes, such as students’ 
final course grades.  Feng, Heffernan, and Koedinger (2009 ), for example, 
merged data from the ASSISTments system and statewide-standardized 
assessments in Massachusetts to explore the benefits of using continu-
ous assessment systems like ASSISTments over and above once-per-year 
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Figure 3.2 Multiple Data Tables and Crosswalk

standardized assessments. In the context of evaluating a variety of digital 
learning environments,  Murphy et al. (2014 ) combined data from mul-
tiple digital learning environments with data from students’ standard-
ized test performances. The growing use of predictive modeling and use 
of early warning systems regularly require researchers to merge datas-
ets from multiple systems (e.g.,  Knowles, 2015 ). Moreover, the similarly 
growing use of predictive models to develop “behavior detectors” often 
requires researchers to merge data from digital learning environments 
and sensors and recording devices (e.g.,  Paquette et al., 2015 ) with data 
from observations taken in classrooms (e.g.,  Baker, Corbett, & Koed-
inger, 2004 ) or coded replays of students’ use of a technology (e.g.,  Sao 
Pedro, Baker, Gobert, Montalvo, & Nakama, 2011 ). 

 Explore 

 Exploratory data analysis often involves some combination of  data visu-
alization  and  feature engineering . These can be considered exploratory 
activities because they are often not done to formally test or confirm a 
hypothesis, but instead to help one continue to develop a richer under-
standing of one’s data. When one first begins working with a dataset, 
especially after merging once disparate tables, it can be useful to begin 
visually exploring variation within individual variables and co-variation 
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between two or more variables ( Loeb, Dynarski, McFarland, Morris, & 
Reardon, 2017 ). Exploratory data analysis is a widely used phrase that 
can evoke specific steps and decisions to follow, or at a minimum, general 
rules of thumb. For example,  Behrens (1997 ), building off of the work 
of  Tukey (1977 ), outlines a somewhat formal approach for engaging in 
exploratory data analysis that is built on (1) understanding the context 
from which data were collected, (2) using graphical tools to understand 
the structure of and relationships within a dataset, (3) manipulating and 
creating features, and (4) iterative model building and evaluation. 

 Given the ways in which most discussions of exploratory data analysis 
draw on the work of John Tukey, many of the processes and styles of think-
ing that he introduced are present in recent discussions of exploratory data 
analysis. For example, Wickham and Grolemund (2017) describe explor-
atory data analysis as (1) transforming data (i.e., manipulating and creat-
ing features), (2) using data visualization tools, and (3) engaging in iterative 
model building. For our purposes, we draw particular attention to the ways 
in which visualization tools and feature engineering, combined, are central 
to exploring one’s data. As we noted in  Chapter 2 , there are many overlaps 
across the steps involved in the data-intensive workflow. Feature engineer-
ing, for example, is closely related to data wrangling. Our primary reason 
for pairing feature engineering with data visualization—under the label 
of exploration—is that as one engages in creating new features, visualizing 
relationships among features can provide tentative evidence for a feature’s 
value and can also help in identifying new features. 

 In exploring LMS from our participating high school, we want to 
identify the proportion of students who earned a C− or lower. To visual-
ize this group of students, we can recode all of the different letter grades 
that students earned into a simple indicator (C− or lower = 0; C or 
higher = 1) and visually explore the number of students in each category. 
As demonstrated in  Figure 3.3 , 25 out of 100 students did not earn a C 
or higher. 

 To start engineering features related to students’ success in the course, 
we can talk with teachers who taught the course last year to get a sense 
of what they perceived as contributing to the high numbers of students 
doing less well in the course. One potential contributing factor is that 
students started slow and never caught up. To explore this hypothesis, we 
can create a feature that addresses when a student first scored at or above 
60 percent on a summative assessment. Using this feature and boxplots, 
we can observe when students, across modules, attained a minimal level 
of proficiency on a respective summative assessment (see  Figure 3.4 ). This 
initial visualization draws attention to the somewhat linear pattern for 
when students first passed a summative assessment. Boxplots represent 
multiple points in a distribution created by a group of observations. The 
box represents the 75th and 25th percentiles and the line within the box 
represents the median, or 50th percentile. The lines, or whiskers, extend 
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Figure 3.4 Day of School Year for First Passing Summative Assessment
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Figure 3.3 Bar Chart of Earning a C or Higher

out from the 75th and 25th percentiles to represent the last non-outlier 
data points in either direction, which are defined as greater than 1.5 times 
the interquartile range (i.e., the difference between the 75th and 25th per-
centiles). Some modules, such as  md_04 , illustrate how students passed 
the summative assessment at almost all points throughout the year, from 
the very first days of school (i.e., close to 0) to the very last days of school 
(i.e., close to 300). 
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     Engineer Features 

 Feature engineering is a highly important but not often talked about element 
of engaging in data-intensive research (Paquette, de Carvalho, Baker, & 
Ocumpaugh, 2014). As a process with inputs, steps, and outputs, it involves 
using theory, knowledge from practice, and logic in order to create new fea-
tures from existing datasets. These features can be used in a variety of data 
products, from predictive models and visualizations to tables comprising 
descriptive statistics. Thus, newly developed features need not only be used 
in a predictive model. For example, when combined with unsupervised 
learning approaches, new features can reveal important new groups within 
one’s data. In many ways, feature engineering is where data wrangling and 
data exploration intersect. As a process, feature engineering is related to 
but distinct from  knowledge engineering , which involves using theory and 
approaches, such as cognitive task analysis, to develop a representation of 
how to execute a process  a priori  (e.g., Paquette, de Carvalho, Baker, & 
Ocumpaugh, 2014). The term “knowledge engineering” is often used to 
refer to connecting different features together around complex constructs 
like “help seeking” (e.g.,  Aleven, Roll, McLaren, & Koedinger, 2016 ). 

 Feature engineering can be constrained by the complexity and granu-
larity of available data. Some systems, like intelligent tutoring systems, 
provide granular depictions of what students do across a large number of 
actions as well as the system’s response to a student’s action. Some LMSs 
can achieve this level of granularity, but more often than not LMSs track 
events such as accessing a learning resource or when a learner has com-
pleted an assessment—as opposed to the items selected and hints used. 
Important to feature engineering, however, is not the volume of data, 
alone. As we described in  Chapter 2 , using data from digital learning envi-
ronments is dependent upon the richness of the underlying task and the 
degree to which that richness is represented in the data that are collected 
and stored by the system. For example, there can be some digital environ-
ments, such as games, that produce large volumes of data on moment-to-
moment position changes on the screen. However, unless this flow of data 
is in some way understandable in relation to the tasks in which learners 
are engaged and is directed at measuring a meaningful construct, it can be 
difficult to first operationalize these large volumes of data into features. 
For example,  DiCerbo (2014 ) and Ventura, Shute, and Small (2014), in 
separate digital learning environments, measured “persistence” in ways 
that advanced thinking around both learning and assessment because of 
the quality of the underlying tasks and the ways in which data from those 
tasks were captured by their respective environments. 

 Data Visualization 

 Visualization is key to both understanding one’s data and communi-
cating what has been learned.  Tufte (2001 ), for example, identified and 
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consolidated effective guidelines for developing quality data visualizations, 
such as having high “data-ink” ratios, highlighting comparisons, clarifying 
potential mechanisms operating in one’s data, and illustrating multivariate 
relationships. Through cycles of feature engineering and data visualization, 
clearer comparisons, mechanisms, and relationships can manifest all while 
working to include as much raw data as possible (i.e., high data-ink ratio). 
For some projects, the focal end product is a visualization; a quality visu-
alization that highlights a key disparity or opportunity for improvement 
can be an important catalyst for action. Thus, after exploring data, one 
can take steps toward communicating to a specific audience. One such 
example comes from a project where researchers were investigating ways 
that data-intensive research methods could be used to enhance stakehold-
ers’ decision making related to students’ success in schools.  Krumm, Boyce, 
Gassman-Pines, Bellows, and Podkul (2017 ) used a Sankey, or flow, dia-
gram to illustrate the degree to which students in grades 6–8 from different 
economic backgrounds were formally written up for behavioral infractions 
in North Carolina schools. This diagram was built using administrative 
data from two separate state-level departments, the Department of Health 
and Human Services and the Department of Public Instruction. Students’ 
participation in the Supplemental Nutrition Assistance Program (SNAP, or 
“food stamps”) was identified using Department of Health and Human 
Services data, and students’ behavioral infraction data came from the 
Department of Public Instruction. Sankey diagrams illustrate the move-
ment of inputs across key steps, changes, or decision points making up a 
flow of activity whereby the width of various flows is proportional to the 
quantity of inputs. In the case of  Figure 3.5 , inputs are students, and the 
flows connect changes in SNAP status to being formally written up for an 
infraction. There are multiple ways to interrogate the visualizations, which 
makes them powerful tools when working within a partnership arrange-
ment as was the case for the research team working with practitioners 
in the Department of Public Instruction. For example, even though black 
students made up only 26.3 percent of the overall student population in 
grades 6–8 in the 2011–12 school year, these students made up 39.1 per-
cent of the students who were formally written up for a behavioral infrac-
tion in school. White students on the other hand, made up 53.7 percent of 
the overall population and only 42 percent of students who were formally 
written up. These observations led to follow-up analyses directed at under-
standing these discrepancies as well as efforts to better understand the rela-
tionships between being written up and academic performance. 

     Returning to our case high school, we have created and visualized a 
feature for when students first scored over 60 percent on a summative 
assessment. In continuing to visually explore the importance of students 
falling behind, we can compare the day of the year students first passed an 
assessment using the grade they eventually earned in the course. Thus, we 
can expand upon  Figure 3.5  by creating two boxplots for each module. 
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 Figure 3.6  illustrates that there is, in fact, a dramatic difference for when 
students completed the first four modules based on the grade they ended 
up earning in the course. Interestingly, the difference between these groups 
of students lessens over time, which might signal that students got off 
track early and were not able to catch up. This particular visualization 
is helpful in developing a potentially useful set of features for identifying 
students who start slow. As evidence accumulates and our mental model 
for these data develops ( Behrens, 1997 ), we can model these data to bet-
ter understand the nature of the relationship between falling behind and 
earning a particular course grade. Along with developing models that can 
help us to better understand relationships among features and between 
features and success in the course, we can use these data to predict which 
students are likely to earn a C− or lower. 

     Model 

 In  Chapter 2 , we introduced two general types of modeling approaches: 
unsupervised and supervised learning. Unsupervised learning, or struc-
ture discovery, algorithms are useful for understanding relationships 
among features in a dataset. Supervised learning models are different in 
that they can be used to quantify relationships between features and a 
known outcome. In this section, we expand upon these earlier distinc-
tions by highlighting two further differences within supervised learning 
approaches: inference and prediction ( Breiman, 2001 ;  James, Witten, 

Figure 3.6 Boxplots for Summative Assessment Passing
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Hastie, & Tibshirani, 2013 ). The key difference between inference and 
prediction is the degree to which a researcher uses a model to interpret the 
relationships among features and an outcome—inference—or whether a 
researcher uses a model to make predictions or classifications—prediction. 
At the level of a project, one can use multiple structure discovery, infer-
ence, and prediction methods. 

 As an example of modeling focused on inference and using digital learn-
ing environment data,  Krumm, Beattie, Takahashi, D’Angelo, Feng, and 
Cheng (2016 ) analyzed data from across multiple community colleges to 
identify patterns in students’ LMS use that could drive interventions on 
the part of community college instructors. The purpose of the project was 
to develop a better understanding of students’ online learning behaviors 
and how they related to students’ performance in the course. For exam-
ple, Krumm and colleagues identified the importance of students read-
ing, practicing, and engaging in assessment activities all within the same 
online session as well as a negative relationship between the number of 
sessions students logged where they ended a session on a low score with-
out engaging in any follow-up activity. These findings helped in building 
a better understanding of students’ online learning behaviors. Hierarchi-
cal linear modeling ( Raudenbush & Bryk, 2002 ) techniques were used to 
estimate the relationships between features that captured the behaviors 
previously cited and known outcomes (i.e., performance on an end-of-
course exam). Particular care was given to the various assumptions that 
needed to be met when using linear models for statistical inference. 

There are many supervised learning approaches that are not appropri-
ate for inference as they offer limited windows into relationships among 
features and an outcome. Most supervised learning approaches that 
support inference, not surprisingly, have a history in statistics and most 
approaches that are geared toward prediction and classification stem 
from software engineering, machine learning, and data mining. 

 If  Krumm and colleagues (2016 ) were less interested in asking whether 
or not the type of sessions students logged were related to their grades 
and more interested in, for example, knowing whether the number of cer-
tain session types could be used to predict students’ likelihood of passing 
a course, then those analyses could be considered geared more toward 
prediction, and in particular, classification. When known outcomes are 
categorical, then the particular supervised learning task is referred to as 
classification. When the known outcome is numeric and continuous in 
nature, such as a test score, then this learning task is referred to as regres-
sion. The term  regression  can take on different meanings across inference 
and prediction uses. From a statistical, or inferential perspective, regres-
sion denotes a family of models that can be used on either categorical 
or continuous outcomes. Perhaps most confusing to newcomers or to 
researchers steeped in either inference or prediction are the ways in which 
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specific models, such as logistic regression, can be used for either infer-
ence or classification. 

 Thus, a researcher’s overall purpose can affect the models one is likely 
to use. When prediction is the focus—either regression or classification—
relationships among features and the known outcome are important only 
insofar as they help one know what is likely to happen in the future or on 
unseen data. With this as an overarching purpose, a researcher interested 
in prediction may deploy multiple different algorithms in order to generate 
the best predictions. There are hundreds of different kinds of algorithms 
a researcher can use, from linear models, decision trees, support vector 
machines, and  k -nearest neighbors, to name but a few examples (see 
 Witten et al., 2017  for descriptions of these and other models). Many 
supervised modeling approaches fall within broader families based on 
their assumed relationships between an outcome and features. Two of the 
broadest families include  parametric  and  non-parametric  methods ( James 
et al., 2013 ). Parametric methods rely on specifying a particular function 
at the outset of modeling, such as a linear or logistic function. Specifying a 
functional form at the outset has multiple benefits—most notably, it makes 
interpreting relationships easier. Non-parametric methods, on the other 
hand, make no assumptions about the functional form of relationships 
between features and an outcome. These more flexible models offer many 
benefits, but key tradeoffs include a lack of interpretability, the need for 
more data, and over fitting. Over fitting means a model is idiosyncratic 
to a specific dataset and makes predictions based on the noise in the data 
rather than the underlying function that generated that data. 

 There are a great many details that come into play when modeling data. 
Purpose, as we described previously, is crucial. Structure discovery helps in 
identifying patterns within one’s data or reducing the overall dimension-
ality in one’s data when the model is not being trained against a known 
outcome. Inference involves paying particular attention to the specific 
relationships between features and an outcome. Lastly, prediction relies 
on a known outcome where the ultimate task of a researcher is to find 
the right combination of features and an algorithm to predict or classify 
unseen data. In what follows, we delve more deeply into each modeling pur-
pose. It is important to recognize that many of the details and complexi-
ties that surface with each purpose will not be addressed. The purpose 
of the remaining sections, as with the two data-intensive workflow steps 
described previously, is to help in organizing and thinking about particu-
lar steps in modeling data within the broader data-intensive workflow. 

 Structure Discovery 

 There are multiple types of unsupervised learning algorithms that have 
been used by education researchers. Baker and Inventado (2014) outline 
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how educational researchers have used approaches like  K -means and 
hierarchical cluster analysis to  group observations  within one’s datasets 
as well as principal components and factor analysis to  reduce the dimen-
sionality  in one’s dataset. Many of these approaches have metrics that can 
be used to identify which clusters or components best approximate one’s 
data. However, without a known outcome that can be used to supervise 
the learning of the algorithm, judgments regarding the structure in one’s 
data often remain subjective. Applying structure discovery algorithms can 
be an end in its own right; they can also be used as exploratory tools 
( James et al., 2013 ). On the one hand, unsupervised models can reveal 
unique patterns in one’s data that can inspire new features and hypoth-
eses, and on the other hand, principal components can directly reduce the 
dimensionality in a dataset that is used to build a predictive model. 

 Clustering algorithms are popular unsupervised learning approaches. In 
general, these algorithms try to organize observations, based on selected 
features, into groups that are similar to one another but discernibly 
different from other groups. Clustering approaches differ in the ways 
of quantifying closeness among observations and differences between 
groups of observations. Hierarchical cluster analyses recursively group 
similar observations; non-hierarchical algorithms like  K -means clus-
tering, on the other hand, requires a pre-specified number of groups 
whereby the algorithm maximizes similarity within clusters and diver-
sity between clusters.    

 In education,  Amershi and Conati (2009 ) applied unsupervised learn-
ing algorithms to data collected from students working in an environ-
ment designed to teach students how to understand artificial intelligence 
algorithms through animation. They used  K -means cluster analysis to 
identify strategies and behaviors, such as stopping to self-explain, used 
by more and less successful learners. Using these techniques, they found 
that students who paused and engaged in self-explanation performed bet-
ter on subsequent learning tasks. Other examples of using clustering with 
educational datasets include studying the strategies students use to solve 
problems in a computer-based game (e.g.,  Kerr & Chung, 2012 ), group-
ing similar texts written in response to questions on an assessment so that 
human scorers can more efficiently grade the quality of student writing 
( Brooks, Basu, Jacobs, & Vanderwende, 2014 ), and surfacing patterns 
that help teachers make sense of students’ use of digital learning resources 
in order to inform subsequent course design decisions (e.g., Merceron & 
Yacef, 2005).  Bowers (2010 ) used hierarchical cluster analysis algorithms 
to group students based on their course grades across multiple years in 
school to identify groups of students who eventually dropped out of high 
school.  Lee, Recker, Bowers, and Yuan (2016 ) used hierarchical cluster 
analyses to group students based on features that characterized the way 
they interacted with an LMS. Using this approach, Lee and colleagues 
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illustrated the relationship between regularly interacting with the LMS 
and succeeding in the courses they studied. 

 As we continue to work with the case high school, we are able to identify 
differences among groups of students based on the grade they earned and 
when they passed a module’s summative assessment. Not well captured 
in  Figure 3.5  are students’ individual patterns for when they first passed 
a summative assessment; each module is treated as its own, independent 
grouping of days of the year. While there are multiple ways to explore stu-
dents’ individual patterns, we can use an unsupervised learning algorithm, 
agglomerative hierarchical clustering, combined with a heatmap visualiza-
tion to identify groups of students based on when they completed a sum-
mative assessment. Certain packages in R, for example, make it possible 
to not only cluster and visualize one’s data, but each observation can also 
be annotated. Because we are working with a dataset that has known out-
comes, we can annotate each observation with whether or not a student 
earned a C− or lower ( Not C ). The word annotation is important because 
unlike a supervised learning approach, the known outcome is not training 
the algorithm it simply follows an observation based on the group that the 
observation is placed into. 

 Each row in  Figure 3.7  represents a student and the day of the year 
that a student passed the summative assessment for a module. Each day 
of year measure can be re-scaled into standard deviation units where 0 
represents the overall average for a module as to when students com-
pleted the summative assessment. Light gray cells represent students who 
completed an assessment earlier than their peers and black cells represent 
students who completed an assessment much later than their peers for 

Figure 3.7 Hierarchical Cluster Analysis With Heatmap
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a given module. The clustering algorithm grouped observations based 
on their similarity across modules. Looking at the lower-left corner of 
 Figure 3.7 , we can see that there are students who are like one another 
across all modules. What is distinctive about this grouping is how similar 
they are on when they first passed the assessment for the first four mod-
ules. The annotation toward the right-hand side of the visualization iden-
tifies students who earned a C− or lower with a black mark in the  Not C  
annotation column. The cluster of students toward the bottom-left of the 
figure are also those who tended to earn a C− or lower. The small cluster 
of students toward the middle of the figure who are also marked as  Not 
C  had later passing dates but much less consistently beyond module 1 
(mod_01) as compared with the lower-left cluster, among other differ-
ences across all modules. 

     Inference and Prediction 

 As described previously, inference and prediction are different purposes 
for using supervised learning techniques. A study by  Marbouti, Diefes-
Dux, and Madhavan (2016 ) is illustrative of using supervised learning 
approaches for prediction. These researchers sought to develop a predic-
tive model that could be used to identify students at risk of failing a first-
year, college engineering course using only performance data that were 
available to course instructors as they taught the course. For their project, 
 Marbouti et al. (2016 ) were less concerned about interpreting the individ-
ual relationships between students’ individual academic performances and 
their overall success in the course, i.e., a question of inference. Instead, 
these researchers were more concerned with identifying the best combina-
tion of features and one or more algorithms that could be used to predict 
which students are not likely to succeed in the course as early as possible 
in the course. In the end, Marbouti et al. used an ensemble approach, 
which involves training a sequence of algorithms to identify whether a 
student is not likely to succeed in the course, and using all of the multiple 
classifications made to render a final classification. 

 Building a predictive model is an iterative process that is somewhat 
distinct from building an inferential model. In broad terms, when 
building and evaluating an inferential model, a researcher uses all of the 
available data, is concerned with the degree to which certain assumptions 
associated with a modeling approach are met, and evaluates the model 
by examining residuals, which are observations’ deviations from the 
predicted relationship between a feature and an outcome. Predictive 
modeling can include some of these elements depending upon the 
specific model used (i.e., a logistic regression model); however, these and 
additional steps undertaken for predictive modeling purposes are framed 
as  training  and  testing . 
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 Training involves applying a model to a subset of one’s data, selecting 
appropriate features, and engaging in model-specific parameter tuning, 
which involves refining user-specified values, such as the maximum num-
ber of nodes allowed along the longest path for tree-based model describe 
later (Kuhn & Johnson, 2013). The basic idea behind training and testing 
is to avoid  over fitting  and to test the generalizability of a model, i.e., its 
performance on data that were not used to train the algorithm in the first 
place. One approach is to train a model on a feature set from, for exam-
ple, 80 percent of one’s original dataset. Using this subset of one’s origi-
nal data, training a model also involves selecting the best set of features 
for predicting or classifying the known outcome. To help in determining 
which features to include, some algorithms, such as decision trees, select 
the best features based on the way they partition data and the parameters 
set by a researcher. Training a model can further involve algorithmically 
recreating the test–train split described earlier but only on the training 
dataset—referred to as cross-validation. Cross-validation involves break-
ing a dataset into  k  number of sub-samples, holding out one sub-sample, 
and using the remaining data to train a model that is then tested on the 
held-out sample. This process happens for each held-out sample and can 
be repeated a desired number of times. After selecting features, selecting 
an algorithm, and tuning parameters, the best performing model is then 
applied to the 20 percent held-out data, which is referred to as the vali-
dation dataset. In some cases, one can use an out-of-sample validation 
set, such as another academic year’s data, to evaluate a model trained 
on data from one academic year. For example,  Knowles (2015 ) trained 
a high school dropout classifier using one academic year’s data and then 
tested the trained model and feature set on the following year’s data. This 
approach can work well if there is enough similarity in terms of available 
data and the underlying activity across the two academic years. 

 Prediction methods, with variations on the themes described previously, 
have been used to predict and classify a variety of different educational 
outcomes, including not only course performance but also higher-inference 
constructs such as inquiry science skills ( Sao Pedro et al., 2011 ) and affec-
tive states ( D’Mello et al., 2008 ). Gobert, Baker, and Wixon (2012) sought 
to predict when students were disengaged while using an ITS. To do so, 
trained researchers coded clips of students’ ITS use and noted each time 
a student appeared to be off task. The clips coded by trained research-
ers were then used as known outcomes on which models were trained. 
Thus, in recent years, it is possible to automatically detect a range of stu-
dent engagement and meta-cognitive variables that can be used to better 
respond to the needs of an individual learner, which is often referred to as 
personalizing learning ( Pea, 2014 ). In fact, many questions explored in the 
educational data mining space center on predicting small-scale behaviors 
of learners to drive more personalized, technology-driven adaptations. 
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 Following the unsupervised learning analyses in our case high school, we 
have added yet more evidence to the idea that students starting the course 
slow may be a useful organizing idea for creating features that can be used 
to understand and predict students earning a C− or lower in the course. For 
the purpose of inference, we may wish to know the degree to which falling 
behind affects the likelihood of a student earning a C− or lower. For the 
purpose of prediction, we may supply an algorithm multiple features, such 
as the same features used in the hierarchical cluster analyses, i.e., day of 
year when student first earned greater than 60 percent (see  Figure 3.7 ), and 
let the algorithm determine the model that best identifies students likely 
to earn a C− or lower. For this task, we can use a conditional inference 
tree model. Decision trees classify observations by partitioning and sorting 
them from the root of a tree out to the leaves, which represent the values of 
a known outcome, such as “C− or lower” or “C or higher.” The root repre-
sents the best attribute for classifying observations, and an observation is 
classified by starting at the root of the tree and following it out to a corre-
sponding value for a known outcome.  Figure 3.8  illustrates our predictive 
model for students earning a C− or lower. The best predictor was the day 
of year that a student completed the summative assessment for the second 
module ( md_02 ). The value for this attribute, and in the case of this model, 
the root, was the 45th day of the year. 

     After training the model, we can then apply it to our testing dataset. 
There are multiple metrics that can be used, especially when using clas-
sifiers, for assessing the overall performance of a model. Many of these 
metrics are based on the idea of a confusion matrix, or contingency 
table. For dichotomous outcomes, the ground truth is either “true” or 

Figure 3.8 Conditional Inference Tree Plot From Training Data
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“false,” meaning that what is being classified is coded as “true” because 
it represents known outcomes. In the case of identifying the likelihood 
of students earning a C− or lower, a positive coding is “yes.” Combined 
with a model’s predictions, we can identify a variety of configurations 
and proportions across, for example, true-positives and true-negatives 
(see  Table 3.1 ). In identifying true-positives, we want to reduce the num-
ber of false-positives, students who have a value for a certain attribute and 
are thus predicted to C− or lower but in reality earned a C or higher (see 
Bowers, Sprott, & Taff, 2013). In building this predictive model, we cre-
ated an 80/20 split in our original data and trained the conditional infer-
ence tree model on 80 percent of the data using ten-fold cross-validation, 
which partitioned the data into 10 equal sub-samples whereby one sam-
ple was held out and tested against the remaining data, one time for 
each sub-sample. The best model from this process (see  Figure 3.8 ) was 
retained and then applied to the 20 percent of the original data that were 
held out as validation data.  Table 3.2  provides the results for our valida-
tion data. Of the seven positive cases, i.e., those students who earned a 
C− or lower, our model identified five of these cases, and two cases based 
on the value of the greater than the 45th day were false-positives, mean-
ing that they first earned a passing grade later in the year but earned a C 
or higher. All in all, this model may prove useful for next year’s teachers 
as a way of identifying students in need of support. 

  Table 3.1  Generic Confusion Matrix 

Ground Truth

Yes No

Prediction Yes True-positive
(TP)

False-positive
(FP)

No False-negative
(FN)

True-negative
(TN)

Table 3.2 Case School Confusion Matrix

Ground Truth

C− or lower C or higher

Prediction C− or lower 5
(TP)

2
(FP)

C or higher 0
(FN)

13
(TN)
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  Conclusion 

 Any text that purports to cover methods, especially at a high level like 
we have done in this chapter, is bound to leave many topics out. Thus, 
there are obviously many methods that we did not address. For example, 
social network analysis offers a powerful set of tools for understanding 
relationships and communication patterns among, for example, individu-
als in an online learning environment (e.g., Anaya, Boticario, Letón, & 
Hernández-del-Olmo, 2015). Text mining and natural language process-
ing models are nearing ubiquity and being used, for example, to under-
stand MOOC completion ( Crossley, Paquette, Dascalu, McNamara, & 
Baker, 2016 ). And for the educational data mining research space, in par-
ticular, we did not address the vast array of approaches related to student 
knowledge modeling, such as Bayesian Knowledge Tracing ( Corbett & 
Anderson, 1995).  Moreover, there are many statistical, i.e., inferential, 
models that we did not discuss, such as longitudinal growth models, mix-
ture models, hazard models, or mixed-effects models (e.g., hierarchical 
linear models)—as well as psychometric approaches like Item Response 
Theory. While there are many statistical approaches that we did not dis-
cuss, there are just as many machine learning techniques that were not 
introduced. As of this writing, the caret package, which is a package used 
in R that contains many machine learning tools, had over 232 available 
models. 

 In spite of these and many more omissions, our goal in this chapter was 
to highlight the intuition and thinking that goes into wrangling, explor-
ing, and modeling data. For researchers, there are many methods and 
models to choose from in analyzing data from digital learning environ-
ments, administrative data systems, and sensors and recording devices. 
These data, along with specific models and analytical techniques, are 
inputs into a data-intensive research workflow that culminates in data 
products that are communicated to an interested audience. This chap-
ter paid particular attention to the wrangling, exploring, and modeling 
steps in the workflow and used a hypothetical case to highlight how an 
entire project can play out across these steps. Before using the types of 
methods described previously, it is important that the right people have 
been brought together to ensure that the best questions are being asked 
that will benefit both researchers and practitioners. This upfront work 
can not only lead to better analyses, it can make the work that follows 
easier too. For example, when working in a partnership, practitioners are 
more likely to take up a potential change idea derived from an analysis 
if they had a hand in shaping the original analysis.  Chapters 6  and  7  
take on these issues by explicitly focusing on what needs to be in place 
as well as how to engage in partnership-driven data-intensive research. 
In the next two chapters, we focus on issues around data privacy that 
make data-intensive research possible in the first place. Following that, 
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we describe the history of different educational research approaches that 
have played a role in shaping the current data-intensive research land-
scape in education. 
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 Sensitivity over use of personal data in education can be understood 
within the broader context of public sensitivity over the collection and 
use of data more generally. Some might argue that big data are noth-
ing new, because scientists and demographers have been collecting large 
amounts of data about people for some time. But today’s data collec-
tions capture much more information about people’s day-to-day and 
moment-to-moment actions, oftentimes with a corresponding feeling of 
invasion of privacy. The machine learning expert Hannah Wallach makes 
a distinction between big datasets arising in the sciences (such as phys-
ics and astronomy) and those involving individuals’ interactions with 
systems that are now causing such concern ( Wallach, 2014 ). She argues 
that because the latter type of big data involve statistical information on 
social, economic, and human behavioral trends—in other words, that it’s 
about  people  and how they act, what they like, and who they are—these 
social  datasets are what give us pause. 

 In day-to-day life, anyone who has engaged in purchasing over the 
Internet has experienced the annoyance of having data collected to 
improve marketing that results in targeted ads that pop up during any 
Internet browsing for months. Many of us, though, are willing to give up 
some privacy—such as anonymized location information—for a benefit—
less sitting in traffic. A 2015 Pew Research survey found that Americans 
have different and evolving perceptions of the risk vs. benefits of releas-
ing personal information based on the location where the data are col-
lected. For example, 54 percent of those surveyed rated it acceptable, in 
light of recent thefts of personal belongings, for a workplace to install 
high-resolution security cameras that could perform facial recognition, 
even if the company subsequently chose to use video footage for rating 
employee attendance. In contrast, only 27 percent of respondents rated as 
acceptable home temperature control sensors that could save energy by 
adaptively adjusting temperatures based on movements around the home 
if they result in the company having information about when people are 
in various rooms in the home and when they move from room to room 
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( Rainie, 2016 ). Still, Pew found people willing to give up data for free ser-
vices, such as email in exchange for targeted advertisements, and resigned 
this tradeoff as a part of modern life, while also desiring better legal rem-
edies, such as better laws requiring disclosure of how information is col-
lected and used ( Rainie & Duggan, 2016 ). 

 One way in which organizations that collect large amounts of per-
sonal data are responding to these concerns is by enabling personal data 
downloads. You can download your Google browsing history via Google 
Takeout, for example, and your messages, connections, and contacts from 
LinkedIn. From Facebook, you can download your profile—birthday, 
gender, current city, hometown, family, education, employers, favorite 
restaurants—a timeline of all posting activity, ads you have clicked on, 
private messages sent, friends deleted, religious views, the IP addresses 
from which you have logged into or out of Facebook, and facial recogni-
tion data. Data downloads can show consumers the scope of data being 
collected and maintained by companies but don’t reveal how those data 
are used and shared across company boundaries. This lack of transpar-
ency has led to calls for more control over not just the collection of per-
sonal data but also its  use  ( Harvard Business Review Staff, 2014 ). 

 Approaches to addressing privacy concerns range from legal protec-
tion to cultural and social norms governing data collection and use. In the 
U.S., federal and state laws have been enacted that govern how research, 
educational, and commercial enterprises should handle personal data, 
and these laws are updated frequently to reflect new concerns about big 
data. As we describe in the remainder of this chapter, privacy concerns 
are driving legislation that could have a dampening effect on educational 
research. Sometimes there are competing and seemingly incompatible 
values, as when the ideal of open science competes with the individual’s 
right to have past behaviors be forgotten. Other times, there are misinter-
pretations, misperceptions, or real or imagined harm. In this section, we 
provide background on privacy and related topics, legality, and ethics in 
using education data. 

 According to a report from the National Science and Technology Coun-
cil (NSTC) in the Office of the President under the Obama administration 
( NSTC, 2016 ), context is imperative in understanding privacy. Certain 
circumstances warrant the sharing of private information. Private infor-
mation can be and is regularly accessed by  authorized  users (e.g., bank 
account information by a credit reporting agency) under appropriate cir-
cumstances. Information security and privacy controls make sure that 
only authorized users access private data. In the next paragraphs, we 
draw from the 2016 NSTC report to discuss concepts that will be used in 
the rest of the chapter: privacy, information security, and trust. 

 The NSTC report treats  privacy  as having to do with expectations of 
control of personal information relative to a context. Individuals do not 
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expect that personal information or data will always be kept secret to 
themselves or never shared with others, but they share their data with 
organizations or individuals with the expectation that the data will be 
confined to that context. Health care, law, education, and religion are all 
areas where individuals may share information that they expect will be 
kept within that context and only used for specific purposes. Violations of 
privacy relate to uses outside of the context within which the data were 
collected that violate the expectations of the individual sharing the data. 

  Information security  refers to standards for data storage of personal 
information that are implemented to prevent unauthorized access to data. 
Early in the adoption of online systems to manage student information, 
information about students was not all sent over secure channels and 
thus was subject to potential “eavesdropping.” This is a clear example of 
a lack of information security and, in 2014, led to a proposed change in 
the Family Educational Rights and Privacy Act (FERPA) to add language 
about private companies using proper security safeguards. 

  Trust  is a belief, based on a relationship, that the individual or organi-
zation to which you supply data will not willingly or unwillingly make 
those data available to additional parties without your consent. Trust in 
privacy in a specific context, then, means that individuals believe that 
they have control over, or knowledge of, use and disclosure of their per-
sonal information, and that they believe there are security controls in 
place to ensure that information cannot be accessed by unauthorized 
users. Disclosure occurs when what was shared within one context—
with presumed controls—is shared in other contexts, and the information 
owner thus loses control. In the case of big data, privacy concerns about 
personal information are heightened because, as we have described, they 
are perceived to be more personal and somewhat intrusive. In data col-
lected for educational use and research, questions arise about the reason-
able privacy expectations of students and parents. What and whom do 
they trust? What are the potential risks of disclosure? 

 Regulating the control of information requires a precise definition of 
the term “information.” For educational purposes, the U.S. Department of 
Education has created a Privacy Technical Assistance Center (ptac.ed.gov) 
to help state and local agencies interpret privacy laws that apply to educa-
tion and to online protections for children. According to the PTAC website, 
personally identifiable information (PII) in education records encompasses 
both direct identifiers (e.g., student’s name or identification number, 
address, Social Security number, telephone number, email address) and 
indirect identifiers, such as date or place of birth, race, religion, and activi-
ties. Sometimes, connecting data together makes it PII, as when one can 
distinguish or trace an individual’s identity because he is the only student at 
the school from a particular zip code or of a particular ethnic background. 
In simple terms, personally identifiable information consists of data that, 
directly or indirectly, can be used to identify a particular person. 

http://ptac.ed.gov
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 Privacy concerns from parents and privacy advocates have risen as 
companies have begun supporting educational entities through data ware-
housing (see  Box 4.1 ) or, more recently, by offering online educational 
experiences that may collect PII or other sensitive information. Such con-
cerns have been heightened by revelations that government agencies have 
been spying on U.S. citizens and by the data breaches at large retailers 
( Bulger, McCormick, & Pitcan, 2017 ). Detailed learning process data col-
lected in the form of system log data and performance on assessments could 
be considered sensitive information if that information has the potential to 
cause embarrassment, unfair treatment, or other harm if released. Derived 
or inferred data, such as classifying a student as a potential dropout on 
the basis of predictive analytics, are also likely to be considered sensitive. 
Parents may be comfortable with an education system collecting such data 
to improve student learning but may become concerned when data leave 
the school or district’s control, especially if they go to private companies. 

 Generally speaking, the potential harm that may come from release of 
such information arises when it is associated with PII. Accidental or mali-
cious release of data can come from data leaks (e.g., school officials acci-
dentally disclosing student data), hacks, or misplaced or forgotten data. 
There may be failure stemming from the absence of a plan for data man-
agement when companies supporting schools, school districts, or state 
education agencies go out of business (Molnar, 2014). Potential harms 
that could follow such releases include, in the education sector, emotional 
responses (e.g., embarrassment), bullying, and damage to reputation. 
However, while reports of breaches and misuse of data can be found 
(e.g., the Privacy Rights Clearinghouse), reports of actual harms from 
release of education data are more difficult to find. Many of the incidents 
listed at the Privacy Right Clearinghouse concern release of personnel 
data rather than students’ education data. Breaches of education data 
have been reported (e.g., a web-accessible plain-text database of student 
information from a network of charter schools in California, including 
name, gender, grade, and disability status;  DataBreaches.net, 2015 ), as 
was an accidental release of similar information by District of Columbia 
Public Schools ( Stein, 2016 ), but actual substantiated reports of harms 
have not emerged ( Herold, January 2014 ). This lack of actual reported 
harms, however, does not mean that data security concerns are invalid; 
they must be taken seriously, and in many cases, there are not only ethical 
obligations but also legal ones, as we describe next. 

 Regulations and Laws on the Use of Data 
in Education Research 

 Across the board, for any scientific research involving human subjects in 
the U.S., the Common Rule ( U.S. Department of Health and Human Ser-
vices, 2009 ) sets forth guidelines for ethical behavior for those who conduct 
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such research. The Common Rule provides guidance for how research is 
reviewed, how one informs subjects of their participation in research, and 
how one obtains consent from subjects to participate in research. Con-
senting to participate relies upon trust that the data collector will only 
use the collected data for the stated purpose and carries an assumption of 
privacy—that any data that could be personally identifiable will be pro-
tected from disclosure. 

 The Common Rule, and regulations that implement it—from agencies 
that sponsor or conduct research with human subjects—guides the work 
of institutional review boards (IRBs) for the protection of human sub-
jects at universities and nonprofit research organizations that receive fed-
eral research funding. IRBs are typically committees or individuals who 
receive applications for conducting research, review the applications, 
and make judgments and recommend alterations to research procedures 
based on the statute governing research with human subjects (i.e., the 
Common Rule) and other applicable regulations (e.g., FERPA in the case 
of research involving students). While the complete set of human subjects 
regulations and guidelines is too complex to discuss here, it is worth not-
ing that the collection and analysis of education data can be categorized 
as exempt from participant consent practices if it is deemed part of nor-
mal education practice or if the data are de-identified. Such exemptions 
do not mean that the data are any easier to get, however; regardless of 
consent requirements, agreements to govern data use and security are 
needed between all parties sharing data. 

 Federal Legislation Specific to Education Records 

 In the U.S., the legal responsibilities of educational institutions that gather, 
store, and use student data and the organizations they partner with to ana-
lyze those data—including universities, nonprofits, and companies—are 
set forth by FERPA, first enacted in 1974. FERPA imposes these responsi-
bilities as a means of protecting parents’ and students’ rights. It gives par-
ents and eligible students the right to review students’ educational records 
and requires schools to obtain their consent before disclosing any student 
information contained in those records to third parties—except in case 
of a specified set of exemptions. In other countries, e.g., in the European 
Union, educational data are governed by broader and more general privacy 
legislation that covers any entity that controls personally identifiable data 
and requires researchers to “obtain personal unambiguous consent before 
data can be processed” ( Har Carmel, 2016 , p. 8). In the U.S., all schools 
receiving federal funds must comply with FERPA, and even if no federal 
funding is received, it behooves any organization to comply. Increasingly, 
as we will discuss later, states are taking on privacy legislation also, some-
times passing laws that are more stringent than the federal regulations. 
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 The stated default for FERPA is to obtain consent for data collection 
and use, but the regulations include exceptions to allow educational insti-
tutions more efficient operations. One exemption relates to data collected 
on the operation of the education enterprise, including assessments, 
attendance data, library records, and a host of other records. Educational 
entities—schools, school districts, and colleges—are expected to gather 
and analyze administrative data for the purpose of improving their ser-
vices to students. Even though these administrative data contain PII, such 
routine data collection does not require notification or parental or stu-
dent consent under FERPA. 

 FERPA also applies in higher education, and the same educational 
purposes exemption applies. But suppose rather than just improving the 
educational enterprise, someone wants to collect or explore the data in 
a systematic way to further knowledge. In this case, the data become 
research data and, if not de-identified, fail to qualify for exemption under 
FERPA. To take an example, suppose faculty at postsecondary institutions 
have been using data collected during the courses they teach to improve 
their teaching. They may be working with an office at their university that 
supports online learning or helps faculty teach more effectively. Such data 
collections generally are not subject to FERPA requirements. However, if 
faculty and staff collecting the data want to share their findings and par-
ticipate in scholarship on teaching and learning, they need to view their 
work as research and conform to the regulations for disclosing use of 
education data as well as those protecting human subjects. For example, 
if they wish to address a research question such as whether their teaching 
approach differentially affects certain student subgroups, such as English 
language learners, and make their results public, they enter the realm of 
research and have to receive approval from an IRB. 

 FERPA supports parents in protecting their child’s PII. It also supports 
educators and administrators by outlining what data they are permitted 
to collect and use without notifying parents, and how they can extend 
that permission to disclose data to authorized users, which may include 
researchers. FERPA allows its “School Official and Audit/Evaluation” 
exemption for use of PII to be extended to cover third parties, including IT 
organizations. The rationale is that these organizations are (1) using the 
disclosed data to provide the same type of services that a school/district 
employee might, (2) providing a service that is controlled by the school/
district (e.g., storing records in a data warehouse under contract to the 
district), and/or (3) using the data for “legitimate educational interests,” 
much as a school official would. For example, FERPA allows schools and 
districts to use cloud-based or other external hosting services provided 
by private companies to host data that includes PII without notifying 
parents of their choice ( Privacy Technical Assistance Center, 2012a ). The 
company is also bound by FERPA, however, and will need to certify in 
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its terms of service or other contract with the school or district that PII 
will not be used for unauthorized purposes. Some people have objected 
to outsourcing of educational functions involving data, but others have 
argued that private companies have better information security practices 
in place than districts ever could, and that this practice can prevent acci-
dental disclosure or disclosure by malicious actors. 

 FERPA limits what an authorized agent can do with PII student data. 
For example, there have been concerns about private companies using stu-
dent data for advertising purposes. We are all familiar with data collection 
during online browsing being used to target advertisements. Since advertis-
ing is not an educational activity, it is forbidden by FERPA ( Data Quality 
Campaign, 2015 ). Understanding what this restriction means in practice 
has become clearer over time. For example, Google Apps offers mail and 
document management in the cloud, and because students and teachers 
often adopt these apps for their own personal use, it’s easy enough to see 
how the education version, Google Apps for Education, could migrate to 
the classroom without much oversight by a school or district administra-
tion. But consider the year 2011, when Google Apps for Education was 
using the same mail scanning system as Google Apps did for non-education 
mail management services. Google offered the same privacy statement 
for Google Apps for Education users as it did for consumers. As a result, 
Google was scanning student emails, as it did consumer emails although 
it was not displaying advertisements to users of its Apps for Education. 
This scanning of student data was unexpectedly uncovered during a law-
suit about Google’s scanning of consumer use data ( Herold, 2014 ). Now 
Google no longer scans emails in Google Apps for Education. 

 Educational research is generally covered under the studies section in 
the FERPA statute ( Privacy Technical Assistance Center, 2012b ) as well 
as being regulated by IRBs. When researchers use educational data, they 
need to comply with FERPA rules around handling PII, including using it 
for research purposes, keeping it secure, and not disclosing it outside of 
the set of authorized users. Written agreements between researchers and 
schools/districts, called data-use agreements (DUAs), can outline exactly 
which administrative PII data are to be given to the research organiza-
tion, how the data will be used, and when the data will be destroyed. 
Non-administrative data with PII collected by the research team, covered 
under IRB, may require parental consent and student assent. 

 While the recommended type of data to share within research–practice 
collaborations is de-identified data, which fall outside of FERPA ( Privacy 
Technical Assistance Center, 2014 ), this practice can be unwieldy because 
it shifts the burden of aligning data collected from different sources (i.e., 
matching records pertaining to the same student that come from different 
sources) from the research organization to the school or district. It is also 



Legal/Ethical Issues in Using Data 69

possible that the merging of records results in having enough informa-
tion about individuals to re-identify them ( Leichty & Leong, 2015 ) or 
that the loss of the identifiers weakens the analysis ( Daries et al., 2014 ). 
Obtaining consent from parents to use PII to make the job simpler is not 
a useful fallback because it brings up issues when some parents opt out, 
potentially damaging the representativeness of the sample. As online edu-
cational companies fill the K–12 market and researchers combine tradi-
tional educational research data collection and data from online learning 
systems, new laws may push for parental consent. 

 In summary, PII data may be collected, stored, and used by a third party 
for legitimate educational purposes under the FERPA “school official” 
exemption or through written consent. De-identified data can be used for 
a broader set of purposes, including research and product improvement. 
Research that utilizes PII is permitted under FERPA as long as the PII is 
not disclosed to parties outside of the researchers who have an interest in 
the data, the information is protected, and the data are destroyed when 
no longer needed. We note that this last requirement is incompatible with 
the move toward open science, and expect further evolution of guidance 
around data sharing and destruction in the years to come. 

 Finally, we note that these federal laws constitute the floor for protec-
tion of student data, and learning analytics researchers should be aware 
that revisions to FERPA have been suggested and likely new amendments 
will be introduced. “Ceilings,” as we shall see next, are increasingly com-
ing from states that are making stricter data privacy laws. 

 State and Local Legislation 

 Recently, states have been stepping in to address what they see as holes 
in federal laws protecting student data. State laws around use of educa-
tion data are expanding—and sometimes confusing—and they may cre-
ate unintended consequences for educational research and improvement. 
While the pace of state student data privacy legislation has slowed down 
from its highs in 2014–15, privacy remains an active issue in state legisla-
tures. In 2016, 34 states introduced 112 bills addressing student data pri-
vacy and 15 states passed 18 new laws ( Data Quality Campaign, 2016 ). 
Many of these laws address transparency and contain provisions specifi-
cally giving parents greater insight into the data that are collected on their 
children. Districts and higher education institutions may interpret such 
provisions to mean that applications to conduct research studies in their 
schools must contain more specific information about the data to be col-
lected and how those data will be used, stored, accessed by parents upon 
request, and potentially deleted upon request. They may also demand 
written consent from parents or from students over age 18. 
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 State data privacy laws and local policies are changing, so readers are 
advised to keep track of changes at their local school board level and 
through state-focused news from organizations such as the National 
Association of State Boards of Education’s project on education data 
privacy, the Data Quality Campaign, the Future of Privacy Forum, and 
Common Sense Media. 

 In our work, when we collect student academic records from a school 
or district, we execute a data use agreement (DUA) that specifies how we 
will use, protect, and dispose of data provided for analysis. Researchers 
need to be clear what counts as student records or administrative data. 
Suppose researchers have created an assessment of student learning that 
is administered as part of the research. If a teacher uses student perfor-
mance on that assessment as part of a student’s grade, it becomes part 
of the student’s academic record and therefore becomes administrative 
data and may need to be covered by a DUA. IRBs can help sort through 
such situations. Within the DUA, we also stipulate that we will not dis-
close the data to any third party or subcontractor without notification 
and approval. When we work with an online learning services provider 
to obtain platform-generated log data, we ask the provider to execute a 
DUA with the school to notify it that the provider is supplying student-
level data to us. Data use agreements make clear how the data will be 
used, and it behooves researchers to explain this clearly. Researchers need 
to be aware of whether the DUA signed with the local education agency 
has restricted data use in some ways. 

 Careful descriptions of what data will be collected or shared and how 
those data will be used need to be included in DUAs. Otherwise, use of 
de-identified data for product improvement might not be covered by the 
agreement ( U.S. Department of Education, 2014 ). Another consideration 
that should be covered in DUAs and parental consent forms is that data 
collected for a particular research study might be required to be archived 
for future use by other researchers under the research funder’s open sci-
ence requirements. 

 More districts are establishing formal application processes to obtain 
permission to conduct research in their schools. Some are requiring formal 
consent for any staff or teacher survey as well as for student data collec-
tions, irrespective of any ruling on written consent requirements by an IRB. 
In a future of stricter privacy rules, some districts or states may require 
written parental consent even for uses of administrative PII data. Addi-
tional work is required, usually on the part of school staff, to distribute 
consent forms to parents and track which students have returned forms 
with parent signatures. The typical method for distributing such forms by 
sending them home with students is vulnerable to loss both on the way to 
parents and on the way back. Further, school staff need to deal with the 
issue of what students without consent will be doing while students with 
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consent are engaged in research activities. Parental consent requirements 
thus pose a challenge for educational research, but this has not stopped 
states such as Arizona from passing legislation requiring parental consent 
for the collection of any personal information from students. 

 Some school districts are getting out ahead of privacy issues and adopt-
ing their own privacy, security, and Internet safety policies. For example, 
the Houston Independent School District (ISD), the largest school district 
in Texas with over 200,000 students, has created a method for district 
staff to rate the data practices of web applications when they are select-
ing digital learning tools and applications. Working with the Council of 
Great City Schools, Common Sense Media, and the Future of Privacy 
Forum, the Houston ISD developed a rubric to evaluate whether the 
digital learning resource under consideration complies with federal laws 
around protecting students, including FERPA, as well as whether data 
are to be transmitted over encrypted links, whether PII is even collected, 
what the application provider’s published privacy policy is, and how it is 
disclosed, whether user data can be deleted when accounts are cancelled, 
and whether the site advertises and, if so, whether the ads are appropri-
ate. Such rubric ratings, if posted publicly on the district website, can 
exert pressure on companies and other providers to bring their security 
and privacy procedures up to date. 

 The flowchart in  Figure 4.1  captures many of the issues one needs to 
think about in protecting data privacy. Of course, as the figure shows, 
steps in this process do not obviate the need for working with an organiza-
tion’s IRB, working with a district or state education agency, or executing 
written agreements around specific data collection and analysis efforts. 

 Ethical and Responsible Use of Data 
in Education Research 

 We have been talking about laws, statutes, and regulations, and as Buchanan 
(2015) points out, the privacy focus in education has been largely about 
compliance, restrictions, and technical approaches. Ethics, in contrast, 
concern doing what is right, whether or not it is enforced by regulations 
and laws. Ethics are about right and wrong, and the moral standards that 
distinguish between them. In this section, we outline potential ethical 
concerns that arise from using data in educational contexts and to make 
instructional decisions. 

 Ethical decisions involving use of big data can be characterized in terms 
of ethical principles for use of the data and its results—doing no harm 
through the use of big data; doing good; making sure that the applica-
tions and results are just, fair, and equitable; and ensuring that individu-
als have agency in terms of decision making or, at least, transparency into 
what decisions are being made about them. 
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Figure 4.1 Protecting Student Data Privacy

 Examples of poor uses of data in educational contexts include targeting 
ads to students, not making clear what happens to data when a company 
goes bankrupt or is sold, making decisions about students based only on 
big data, and not asking for accountability in the algorithms used. More 
responsible uses of data include improving a product or a practice based 
and using multiple sources of data rather than a single metric when mak-
ing consequential decisions. 



Legal/Ethical Issues in Using Data 73

 Commercial organizations that collect and use data can do so responsi-
bly by adopting the Fair Information Practice Principles from the Federal 
Trade Commission. These state that an organization should not col-
lect more data than needed, should not collect or store inaccurate data, 
should specify how data are to be used and get permission for its use, 
and should get permission, when possible, before using data in new ways. 

 While no privacy agreement is perfect, the examples from the U.S. 
Department of Education for educators wishing to develop terms of service 
( Privacy Technical Assistance Center, 2014 ) and the Software and Infor-
mation Industry Association (SIIA) are helpful resources that acknowl-
edge that security and privacy practices need to explicitly address parents’ 
and students’ potential concerns. Critically, these resources make it 
clear that what the law requires is a  minimum  standard for what can 
and cannot be done with student data. SIIA also collaborated with the 
Future of Privacy Forum to create the Student Privacy Pledge (https://
studentprivacypledge.org/). Companies signing the pledge promise to 
make clear how they meet federal law and regulatory guidance covering 
the collection, maintenance, and use of students’ personal information. 

 Researchers shouldn’t discount or dismiss the voices of stakeholders 
like parents, even when those voices seem to come from an antagonis-
tic vocal minority. Methods of communication include privacy policies, 
consent and assent forms, and data use agreements. Schools, unfortu-
nately, may not make, or may not feel they can make, the fine distinction 
between data used for research purposes and data collected by online 
providers for improving products. 

 Transparency, Accountability, and Fairness 
in Algorithms 

 Imagine a data scientist studying students who “game the system” when 
learning online by looking for ways to get through the online learning 
assignments without really working to grasp the learning content. The 
data analyst may have identified a set of online behaviors—such as going 
directly to online quizzes without reviewing study material—that she 
defines as gaming, and may have demonstrated that such behaviors cor-
relate with low scores on the course final examination. Now suppose the 
researcher labels students who exhibit these behaviors online as “slack-
ers” to distinguish them from students with other online behavior pro-
files. Perhaps the research team brainstorms interventions to re-engage 
such students in the online learning activity. But what if, through a hack 
or incomplete or insecure practices, the names of children diagnosed as 
“slackers” become public? While the intention was to help all students 
do better, the labeling might affect how teachers interact with the labeled 
students in ways that are deleterious. Moreover, it may be that there are 
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biases built into the algorithm used to identify slackers. Given such poten-
tial for harms and loss of trust, it is incumbent upon researchers engaged 
in data-intensive research to anticipate and take measures to avoid poten-
tial compromises to data security. Within a research–practice partner-
ship, data confidentiality and security efforts are part of building and 
maintaining trust; central to ethical professional practice; and of course, 
necessary to be compliant with applicable federal and state laws on data 
use and privacy. 

 Box 4.1  Contrasting the inBloom and PAR Student 
Data Initiatives 

 Perhaps the highest-profile education example of a failure to ade-
quately address privacy concerns was the data integration effort 
known as inBloom. Started as the “Shared Learning Collaborative” 
project funded by the Gates Foundation in 2011, inBloom’s intent 
was to build and deliver a data warehouse or storage service that 
could integrate data from multiple systems with a school district. 
The idea behind the project, which was eventually spun off into a 
nonprofit organization, was to implement a specification for data 
interoperability. 

 InBloom was built as “middleware” that would support data 
storage, merging from disparate databases, and integration into 
user-facing applications and reporting systems. InBloom sought to 
bring together, under a common and open source data architecture, 
legacy systems’ data as well as new data coming in from, for exam-
ple, learning management systems. The idea was to free data from 
proprietary datastores and applications. To drive development, user 
demand, and more widespread adoption, inBloom signed on large 
and prominent districts. 

 To many journalists and parents, this development seemed like 
an example of the dangers foretold by the Electronic Privacy Infor-
mation Center (EPIC) in its lawsuit against the U.S. Department 
of Education that alleged that FERPA’s laxity would allow private 
companies to collect and use student data. These constituents did 
not see inBloom as collecting data on behalf of a school official for 
a legitimate educational purpose: instead, inBloom was branded as 
a “big data broker” during the public outcry that arose when news 
of district adoptions was reported. 

 We think it is instructive to compare the eventual shuttering of 
inBloom to the success of the Predictive Analytics Reporting (PAR) 
effort. PAR initially started out as a nonprofit organization, and 
began as a cooperative of higher education institutions that came 
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together to create a common data framework consisting of common 
data elements. PAR began working with many institutions of higher 
education (IHEs) facing accountability pressures, including a need 
to report on and improve student retention and completion rates—
especially for students receiving U.S. federal government dollars in 
the form of student loans. PAR worked bottom up with many IHEs 
to identify their programs designed to enhance student completion 
rates; to collect, clean, and organize data; and to identify the most 
important variables to capture. As of December 2015, PAR was 
using 77 variables, such as academic cycle, instructor and learner 
characteristics, and progress in a course, for each of an IHE’s online, 
blended, and face-to-face courses. 

 How did PAR succeed where inBloom failed? Its developers and 
promoters would argue that, unlike inBloom, they responded to a 
demand that was already present in higher education. The institu-
tions participating in PAR wanted to use data to inform improve-
ment of their offerings and to increase their success with students. 

 The educational data science community can learn lessons from past 
failures and controversies around data privacy and security in the pub-
lic and commercial sectors. The machine learning community has begun 
to sound its own alarms (e.g., O’Neill, 2016) and to seek solutions by 
developing better algorithms and better methods for using and validating 
models. 

 Bias and lack of fairness can emerge in datasets in a number of dif-
ferent ways. First, the datasets may not represent the full population. 
Withholding of student or parental consent for research participation 
on a large scale can mean that the data that are collected come from 
unrepresentative samples. Or the group participating in a digital learn-
ing experience that produces data may be self-selecting in ways that 
limit the generalizability of findings based on those data. In the early 
days of MOOCs, for example, the expectation was that populations 
typically without access to higher education would flock to the open 
courses; however, surveys showed that college-educated adults were the 
most likely to participate (Ho et al., 2014). Finally, because machine 
learning algorithms are designed to pick up patterns in data, they can 
pick up and reflect back the biases of the activity systems that produced 
those data. 

 One issue is the fact that big data algorithms are tuned to the majority 
in the dataset. Classifiers improve their accuracy if they see lots of labeled 
examples, but if some of those labeled examples represent a small but sys-
tematically different group, the classification algorithm may be accurate 
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on average but not for the systematically different group. For example, 
when the social media site Facebook attempted to build a “fake profile” 
(i.e., not genuine users) detector, the profiles of Native Americans, among 
other minority groups, were falsely identified as “fake” (Higginbotham, 
2016). A similar concern arises when a relevant feature or feature set in 
the data is correlated with an attribute such as race or gender: Even when 
not explicitly modeled, race and gender may surface as factors because 
they are associated with other attributes that are explicitly modeled. 
Thus, these factors may be correctly learned by the machine learning 
algorithm as predictors of outcomes, although not labeled as such. The 
result is that the algorithm, upon inspection of its results, appears to be 
making decisions based on, for example, race or gender. The machine 
learning expert Moritz Hardt points out that there is currently no prin-
cipled way, a priori, to determine if such decisions are acceptable or 
in which cases they may cause harm (Hardt, September 2014). As these 
personal characteristics are not something an educational improvement 
effort can change, algorithms that point to demographic characteristics 
as predictors of poor education outcomes can promote a sense of help-
lessness among educators. These are cases where computer scientists and 
legal experts are working together to develop guidelines and standards 
for ethical practice. 

 Machine learning researchers are now suggesting audits on algorithms, 
but even with humans reviewing the models, there can be confirmation 
bias, based on sometimes unconscious beliefs that a developer has about 
social phenomena. The computing professionals’ organization, the Asso-
ciation for Computing Machinery (ACM) issued a January 2017 state-
ment on algorithmic transparency and accountability, citing evidence 
that it can be impossible to determine when algorithms produce biased or 
erroneous outputs. They cite three factors that may make computational 
models opaque: (1) the code may not be easy to explain; (2) it may cost 
money or reveal trade secrets to explain the code; and (3) showing input 
may disclose personal information. They argue that algorithmic decision 
making should be held to the same standards and audits as human deci-
sion making. They recommend that regulators enforce access and redress 
for affected groups and hold institutions accountable for decisions made 
by their algorithms. Developers, as part of their code of ethics, should 
maintain awareness of possible bias and should track data provenance, 
document design, and coding decisions so audits can be made, as well 
as rigorously validating and testing models. Researchers, knowing the 
susceptibility of both datasets and algorithms to various kinds of bias, 
should practice transparency around algorithms so that other researchers 
and stakeholders can replicate analyses and test their hypotheses about 
possible biases. 
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 Data Safeguards in the Age of Big Data 

 It is clear from legislation that has been introduced in recent years that 
the public’s data privacy concerns are focused largely on private compa-
nies collecting and using data for purposes that are not in children’s best 
interest. Every year since 2008, legislation has been introduced to revise 
FERPA, based on the perception that it does not do enough to protect 
student data. 

 At the same time, there are also voices watching out to ensure that 
rules do not inhibit the ability of local and state education agencies to 
use student data to improve teaching and learning, including conduct-
ing research with this ultimate goal. The Data Quality Campaign (DQC) 
is a nonprofit organization that provides information and resources, 
including testimony to Congress, to help administrators and legislators 
understand FERPA and the potential impacts of proposed changes. Other 
organizations that are supporting schools in data use are the Consor-
tium for School Networking (COSN), a membership organization that 
advocates for effective use of educational technology in K–12 schools 
including broadband and wireless networking. COSN, DQC, and other 
stakeholders have created the Student Data Principles, which describe 
responsibilities and values for student data use that are relevant for 
all stakeholders. Other thought leaders in this space come from the 
Data & Society research institute, Harvard’s Berkman Center for Inter-
net & Society’s Student Privacy Initiative, and the National Conference 
of State Legislatures. 

 Conclusion 

 In this chapter, we unpacked the topic of privacy in general, paying par-
ticular attention to student privacy. We outlined the special concerns we 
have for our own data and for children’s data in educational contexts and 
described issues surrounding ethical and responsible use of data when a 
dispassionate algorithm may be weighing in on consequential actions. We 
described discussions taking place in the computer science community 
on fairness, accuracy, and transparency in machine learning algorithms. 

 Researchers and schools engaging in data-intensive research can con-
tribute to the public debate by documenting and disseminating their 
research efforts and explaining their procedures for protecting student 
privacy as they conduct their work. In  Chapter 7  we will discuss the 
importance of building trust early on when we establish research part-
nerships with education practitioners. Trust is key to our change process, 
and few things can destroy trust more rapidly than sloppy practices and 
incomplete policies around privacy and ethical use of data. 
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 In this chapter, we discuss three major influences on the collaborative 
data-intensive improvement (CDI) model introduced in  Chapter 1 —data-
driven decision making, emerging models of how researchers and educa-
tion practitioners can engage in collaborative research, and the rapidly 
expanding fields of educational data mining and learning analytics. In 
discussing these major influences, we draw historical connections and 
highlight the ways in which research on data use in schools—and the fac-
tors contributing to increased data use—can be used to better understand 
the present and potential future for data-intensive research in education. 

 Influence #1: Data-Driven Decision 
Making in Education 

 Interest in using data to improve education and learning outcomes did 
not originate with educational data mining or learning analytics. To the 
contrary, there have been efforts to promote data-driven decision making 
in education since at least the mid-1980s ( Popham, Cruse, Ranking, San-
difer, & Williams, 1985 ;  Sallis, 2005 ). Many of these efforts were inspired 
by Total Quality Management and continuous improvement initiatives in 
the business sector (e.g.,  Schmoker, 1996 ) with their origins in the work 
of W. Edwards Deming and other productivity experts ( Sallis, 2005 ). 

 Deming’s ideas about organizing industry to produce high-quality prod-
ucts were grounded in his experience working at Western Electric’s Haw-
thorne plant —home to efficiency research that gave rise to the concept 
of the “Hawthorne effect” (Gillespie, 1991)—during the 1930s and his 
later work with statisticians at the U.S. Department of Agriculture. At the 
Western Electric plant, Deming studied work groups and became con-
vinced that leadership style and group norms were key elements to pro-
ductivity. At the Department of Agriculture, he and Shewhart, a fellow 
statistician, developed the idea that iterative “Plan, Do, Check (or Study), 
Act” cycles could be used to reduce waste and delays in manufacturing 
( Sallis, 2005 ). This idea was core to what became known as Statistical 
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Process Control, a set of techniques that piqued the interest of Japanese 
industrialists trying to rebuild their economy after World War II, and 
Deming went on to work with Japanese clients to develop the concepts, 
processes, and tools for Total Quality Management (TQM). From their 
origins in the manufacturing sector, TQM concepts and approaches later 
spread to service and financial industries ( Sallis, 2005 ). 

 Concern on the part of U.S. businesses and policymakers about their 
ability to compete with Japan and other countries in the more competi-
tive global market place of the 1980s fueled American businesses’ interest 
in these techniques for promoting more consistent quality and produc-
tivity. In 1987 Congress passed the Malcolm Baldrige National Quality 
Improvement Act, creating a National Quality Award for performance 
excellence administered by the Department of Commerce. Still in effect 
today, the Baldrige Award competition uses a quality framework very 
consistent with Deming’s work that includes the category of excellence in 
“measurement, analysis, and knowledge management.” 

 At the same time, public-private partnerships between businesses and 
education entities were becoming increasingly widespread, and it was prob-
ably inevitable that TQM would move into the education sector. In 1991, 
an education-specific version of the Baldrige Quality framework was devel-
oped, and in 2001 the Chugach School District in Alaska became the first 
education organization to win a Baldrige award. Books such as Victoria 
Bernhardt’s  Data Analysis for Continuous School Improvement , which is 
now in its third edition, sought to guide education administrators in the 
application of TQM processes and principles to school systems. 

 Important principles from TQM that apply to education as well as 
other sectors include: 

 • Quality improvement is a way of working, not a single event or project. 
 • Continuous improvement efforts require teams that transcend orga-

nizational boundaries and where ideas can bubble up from any level 
of the organization. 

 • Organizations need to measure process as well as inputs and outputs. 
 • Measures need to be developed by and valued by members of the 

work team rather than imposed by others. 

 An example of a well-resourced implementation of data-driven decision 
making in a school district is described in  Box 5.1 . 

 The Impact of No Child Left Behind 

 Advocacy on the part of business partners and consultants persuaded 
many education leaders that education decisions should be based on 
objective data rather than instinct or philosophy. Many more educators, 



82 Collaborative Applications of Data Mining

however, were pushed toward data use by the requirements imposed by 
the 2001 reauthorization of the Elementary and Secondary Education 
Act called No Child Left Behind (NCLB). To receive federal funding for 
education, which almost all public school districts do, NCLB required 
extensive testing of students. Local education agencies had to test every 
student every year in grades 3 through 8 and one year during high 
school in reading/language arts and in mathematics. Further, the act 
required reporting results of this testing not only for students overall, 
but also for student subgroups defined by race/ethnicity, poverty status, 
special education status, and English Learner status. Finally, the act stip-
ulated that each state had to make “adequate yearly progress” toward 
bringing all students in all of these student subgroups to proficiency on 
these examinations by the 2013–14 school year; it was up to each state 
to set its own definition of what constituted “proficiency.” Schools that 
did not meet what their states defined as adequate yearly progress on 
improving the proportion of proficient students in each subgroup for 
two successive years were subject to a set of sanctions, including the 
requirement to let their students transfer to a better-performing school, 
the requirement to offer free tutoring, reduction in federal funds, and 
even school closure. 

  Box 5.1   An Example of Data-Driven Decision 
Making in Education 

 A school district where we interviewed both teachers and admin-
istrators described its determination to increase its students’ scores 
on state achievement tests and to reduce performance gaps between 
white and African American students. With these goals in mind, the 
district had invested in a new software system that would give not 
only principals but also individual teachers access to test score data 
for the set of students for whom they were responsible. After notic-
ing that most teachers at some district schools were accessing the 
student test data but teachers at other schools weren’t, the district 
decided to implement a district-wide initiative to form professional 
learning communities (PLCs) to promote the use of data. Formal 
PLC meetings conducted during the regular school day became dis-
trict policy. There were PLC meetings dedicated to language arts and 
math staff development during which reading or math specialists 
planned and led the meetings to discuss student data and instruc-
tional strategies that teachers could use with students who had not 
attained proficiency in these subject areas. Other PLC meetings were 
led by team members to monitor student improvement, develop 
common assessments, and share best practices. The district contin-
ued to keep track of teachers’ use of the data system. A log was kept 
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of teachers’ interactions with the data system, and principals talked 
to teachers who were not using the system to find out why. 

 When the district introduced mid-year benchmark assessments, 
teachers found they had more incentive to use the data system 
because it could offer them more recent and more detailed data 
on student performance. Teachers lauded the fact that they could 
see how individual students performed on particular test items. 
They were also able to compare their own students’ performance 
with performance in other classes, the school as a whole, and the 
district as a whole. Because they could compare their class with 
other classes in their own school, teachers could have some basis for 
inferring whether their students’ performance on particular items 
was due to their instructional practices or to the wording of the 
test item, which would affect students in all classes. This helped 
teachers decide whether they needed to reteach the topic related to 
items their students stumbled on or to make changes to their own 
teaching practices. Some teacher PLCs began using their common 
planning time to compare performance of their respective classes 
on the common test and to discuss the relationship between differ-
ent instructional approaches and student performance. One such 
example came from a pair of social studies teachers who taught the 
same content but had students with quite different performances on 
the benchmark test. After the meeting, the teacher whose students 
had performed better began coaching his colleague. 

 Some teachers have found it useful to share results of interim 
assessments not just with colleagues but with their students. One 
teacher noted, “The kids even like to look at it [the interim assess-
ment report]. That’s so cool. We talk about how we need to analyze 
the question.” 

 Source: Adapted from case study descriptions in  Means, Padilla, and Gal-
lagher (2010 ). 

 Not surprisingly, educational administrators became very motivated to 
collect and manage data that would help them assess and improve their 
schools’ status with respect to NCLB-related requirements for improving 
achievement ( Marsh, Pane, & Hamilton, 2006 ). This need helped drive 
district development of data warehouses and acquisition of more sophis-
ticated student information systems, as described in  Chapter 3 . Fur-
ther, NCLB stipulated that teachers should use data from standardized, 
state, and national assessments in their instructional decision making, 
thus linking data-driven decision making to the use of different forms of 
instruction for different students ( Dunn, Airola, Lo, & Garrison, 2013 ). 
Further motivation was provided by the requirement in the No Child 
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Left Behind legislation that schools receiving federal education funding 
engage in “evidence-based practice.” This same push for the use of prac-
tices and products with evidence of effectiveness was carried through in 
the grants programs administered by the U.S. Department of Education. 

 Educational applications of data-informed quality improvement efforts 
during the NCLB era typically used data on student demographics (i.e., 
membership in any of the subgroups for which NCLB reporting was 
required) and test scores—either end-of-year state tests or district-selected 
progress (i.e., benchmark) tests designed to predict how well students would 
do on the end-of-year state exam ( Marsh et al., 2006 ). Thus, these analyses 
emphasized inputs (i.e., students’ characteristics and which teachers pro-
vided their instruction) and outputs (i.e., examination scores), but paid 
scant attention to processes (i.e., what actually happened in classrooms). 

 Researchers who studied the use of data in schools and districts during 
this period uncovered a number of issues that undermined the effective-
ness of this form of data-driven decision making as an improvement strat-
egy ( Means et al., 2010 ). First, there was the problem of the timeliness 
of the data. The state test scores required for federal reporting and com-
puting adequate yearly progress were not available until as much as six 
months after the spring end-of-year testing. This meant that by the time 
the scores were available to districts, principals, and teachers, the students 
who had earned those scores had moved to the next grade. The scores 
could tell a teacher how her students fared the prior year, but she was 
no longer responsible for working with those particular students. What’s 
more, classroom instruction requires literally thousands of decisions about 
what to say and do every single day. The time frames of annual testing and 
instructional decision making were badly out of sync ( Crawford, Schlager, 
Penuel, & Toyama, 2008 ). 

 In addition, the information available from state tests is generally at 
a pretty coarse grain size. State test composite scores for a subject such 
as mathematics are generally quite reliable. Scores for more specific skill 
or knowledge areas within the subject, such as being able to solve mea-
surement or fractions problems, on the other hand, are often not reliable 
enough to support making decisions about what to do with individual 
students because relatively few test items comprise the specific scales. 
Adding enough items to make each component scale reliable would mean 
a major increase in the amount of time devoted to state testing, an option 
that has little appeal. But when the only reliable score you have for a 
student is the composite subject score, all a teacher knows about that 
individual student is that he had a high, medium, or low score in math-
ematics the prior year. Such scores do not provide the kind of specific, 
detailed information about where the student did well and where he did 
poorly that could be used to plan an instructional program tailored to 
the student’s needs. 
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 To some extent, educators have addressed these two challenges—obtaining 
more recent and sufficiently detailed data on student competencies—by 
using formal assessments more frequently, administering them at multi-
ple points throughout the school year, which are variously called “bench-
mark,” “interim,” “formative,” or “progress” assessments. These tests 
can be administered at whatever interval the district or school chooses, 
and they can provide quite detailed results for current students since the 
entire year’s worth of content does not have to be covered on any one of 
the assessments. Use of interim assessments to guide instruction became 
a common practice in the 2000s, with many commercial vendors and 
individual school districts developing assessment instruments for this 
purpose ( Marsh et al., 2006 ). 

 Use of interim assessments could not address another important chal-
lenge to data-driven decision making based on test scores, however—
the fact that scores on state tests can be improved significantly without 
really addressing deeper learning. Coaching students on how to work 
with different item formats and distributing instructional time across dif-
ferent content areas in a way that matches their relative representation 
on the state test were found to improve students’ test scores (Schmoker, 
1996). Visiting one school identified as exemplary in data-driven decision 
making, for example, we learned that teachers attributed their year-to-
year improvement in students’ reading scores to the fact that they had 
switched from an emphasis on teaching reading comprehension to one 
on learning new words after their analysis of the state test revealed that it 
had more items focused on vocabulary than items requiring understand-
ing of passages one has read. As such “teaching to the test” caught on, 
scores on state high-stakes tests rose, but student achievement levels as 
measured by the National Assessment of Educational Progress, which is 
not used for accountability purposes, did not ( Koretz, 2008 ). Teachers 
were learning to tune their instruction to the characteristics of the test 
used in their state, without generating broader learning that would show 
up on other measures of student achievement. 

 Additional challenges for NCLB-era data-driven decision making included 
the sometimes cumbersome data dashboards teachers were expected to work 
with and inadequate professional development on how to interpret student 
data and what instructional choices to make in response to it ( Mandinach & 
Gummer, 2016 ;  Means et al., 2010 ). 

 Influence #2: New Forms of Collaborative 
Education Research 

 As described in  Chapter 1 , our approach to data-intensive improvement 
comes out of a broader tradition including multiple conceptions of educa-
tion research linking research and practice. The next portion of this chapter 
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describes some of the major collaborative education research approaches 
and the insights we have gleaned from them. These approaches may be 
thought of as a family of similar stances toward education research, and 
indeed specific research projects may be difficult to classify as falling 
into one or another of these categories. All of these approaches involve 
researchers and practitioners working together to learn from data, but 
their central purposes and collaborative structures vary, as described later. 

 Translational Research 

 Within the field of medicine, there is now widespread recognition that 
research findings from controlled experiments in laboratory settings are 
insufficient to guide the actual practice of medicine. Out in the real world, 
where patients may not disclose all of their symptoms or may fail to fol-
low doctor’s instructions, treatments that work under controlled settings 
may prove ineffective.  Translational research  attempts to bridge the gap 
“from [scientists’] bench to bedside.” By 2008 the National Institutes of 
Health in the U.S. and the parallel agency in the U.K. had invested over 
$1 billion in translational research centers for health science ( Brabeck, 
2008 ). 

 Educators and education researchers point out that the gap between 
experimental laboratory research in learning and what happens in 
schools and classrooms is easily as large as the gap faced in public health 
( Brabeck, 2008 ). To actually improve education outcomes, we need more 
than the fundamental principles of human learning as discovered and 
demonstrated in controlled laboratory tasks. We need to understand how 
multiple learning, social, and emotional processes play out in the con-
text of academic tasks as they occur in complex classroom environments 
(National Research Council, forthcoming). 

  Daniel (2012 ) points out that some academic researchers have had a 
propensity to extrapolate recommendations for education practice and 
even whole interventions based on their laboratory findings without 
first establishing their usability and potential unintended side effects in 
real-world education settings. Sometimes referred to as  implementation 
research , translational research that tests out practices designed on the 
basis of laboratory findings in classrooms and schools is time-consuming 
and difficult, yet vitally important. 

 Daniel describes translational research connecting learning science and 
education in terms of five steps or stages: 

 • Identification of findings from controlled laboratory studies with impli-
cations for classroom practice; 

 • Replication of the basic laboratory findings in classroom contexts to 
yield a “promising principle”; 
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 • Design and development of a method incorporating the principle that 
can be carried out by teachers in classroom settings; 

 • Experimentation on the promising principle in a wider range of repre-
sentative educational settings to establish a “promising practice”; and 

 • Continued refinement and dissemination of the practice as it scales. 

 Key to translational research is the involvement of people with deep under-
standing of the contexts to which laboratory findings will be translated in 
the design and development of methods for classroom application. 

 Executing all of these steps can take a decade or more of work ( Ros-
chelle et al., 2010 ). It should be noted also that the different steps in 
translational research require different skills and knowledge bases. Many 
of those who study basic learning principles in university laboratories 
have limited acquaintance with the conditions under which public school 
teachers work and with current education policies and priorities. A learn-
ing principle that helps foster retention when subjects in a laboratory 
experiment try to memorize arbitrary word pairs may be swamped by 
other influences when sixth graders from disparate cultural backgrounds 
try to learn the order of operations in solving equations. A format that 
works well for college student subjects spending an hour participating 
in a laboratory study may try the patience and attention spans of stu-
dents receiving an entire course presented in that format. Laboratory-
demonstrated principles like spaced practice (i.e., learning facts and 
procedures is facilitated if practice is spaced out over time rather than 
done all at once) can run afoul of district pacing charts that specify what 
a class should be doing each week of the year. 

 Teachers need more than general principles; they are looking for spe-
cific guidance about what they should do when. Translational research 
teams need designers who are steeped in the culture and conditions of 
the kinds of classrooms where the research-based practice will be imple-
mented. These designers can help researchers develop interventions that 
are compatible with classroom conditions as well as encapsulating basic 
learning science principles. 

 Translational research ideas have had an influence on the way that fed-
eral agencies think about different types of educational research (e.g., the 
 Common Guidelines for Education Research and Development  by the 
Institute of Education Sciences and National Science Foundation, 2013). 
The Common Guidelines developed by these agencies describe six types 
of research falling into three broad categories: 

 • Foundational and early stage research which encompasses both basic 
research testing theories of learning and exploratory research exam-
ining relationships among constructs that are important in learning 
theories; 
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 • Design and development research to develop interventions based on 
foundational and early stage research and try them out in realistic 
settings to make sure they can be implemented and appear likely to 
produce the intended outcomes; and 

 • Impact studies testing whether the intervention actually causes the 
desired outcomes to occur at least under ideal circumstances, and 
later under a wider range of conditions. 

 Collaborative data-intensive improvement starts out in the second of 
these research categories and then moves to the third. The nature of the 
work in the third research category tends to be rather different from 
that described by the federal agencies, however. The focus for education 
practitioners will remain on their own jurisdiction, and they will strive to 
provide the ideal circumstances for the intervention to have the desired 
impacts in all their schools and classrooms. 

 Key tenets from translational research that have influenced our own 
thinking are the importance of: 

 • involving users (e.g., teachers and students) in designing practices or 
materials that leverage findings from the research lab; 

 • studying the effectiveness of practices in multiple real-world settings 
as implemented by the people in those settings; and 

 • employing rigorous research methods with appropriate control 
groups to estimate impacts of the new practice. 

 Design-Based Implementation Research 

 When education researchers study educational practices and programs in 
situ (i.e., in actual schools and classrooms), they inevitably are confronted 
with the variability of impacts across settings. An approach that appeared 
to work well in one class or school often has no effect and sometimes is 
even detrimental elsewhere ( Cronbach & Snow, 1977 ;  Means & Harris, 
2013 ). Such variability in findings makes it difficult for researchers to 
make unconditional statements about “what works” and can discourage 
educators from even bothering to look at research findings. 

 A significant body of research on the implementation of complex edu-
cation innovations has emerged over the last several decades, often in 
conjunction with large-scale studies of an intervention’s effectiveness. For 
example, in conjunction with their experimental studies of the impacts 
of innovative middle school mathematics curriculum units, Jeremy Ros-
chelle and colleagues ( e.g.,   Roschelle & Shechtman, 2013 ) investigated 
the extent to which effectiveness varied for different kinds of students, 
different kinds of teachers, or different teacher practices. Such implemen-
tation research reflects the complexity of education systems and brings 
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issues of context and variability to the fore. But this kind of implementa-
tion research is still research done  to  and  for  educators rather than  with  
them. 

 More recently, design-based implementation research (DBIR) has emerged 
as a set of principles consistent with real partnerships between researchers 
and practitioners.  Penuel, Fishman, Cheng, and Sabelli (2011 ) made the first 
formal statement of principles for this approach in a widely disseminated 
 Education Researcher  article. They posited four defining principles: DBIR 

 • Focuses on problems of practice as conceived by multiple stakeholders. 
 • Requires a commitment to collaborative, iterative design processes. 
 • Seeks to advance theory as well as classroom learning and knowledge 

of implementation issues. 
 • Develops organizational capacity for sustaining system change. 

 Arguably the most radical departure from prior research practice is DBIR’s 
commitment to jointly negotiating the research agenda with the practitio-
ners who are partnering with researchers. Education research as usual has 
the researcher formulating a research question about a particular practice 
or program and then recruiting education entities willing to implement it 
as defined in the research protocol. In DBIR, the researcher first forms a 
partnership with education entities based on a shared general concern and 
 then  negotiates the research questions with them. 

 DBIR also borrows notions of co-design, with the idea that the best 
way to develop practices and materials that are really usable in schools 
and classrooms is to design them with members of the groups that will 
be using them—whether administrators, teachers, or students.  Penuel 
et al. (2011 ) point out that successful scaling of an educational innova-
tion depends on the actions of local administrators and teachers who will 
interpret the innovation and adjust it for local circumstances. Working 
with local actors involved in this process of interpretation and adjust-
ment provides researchers with the opportunity to contribute to benefi-
cial impacts and to better understand the conditions that facilitate or 
hinder effective implementation. 

 The collaborative nature of DBIR calls for multiple cycles of design, 
implementation, and refinement with the practitioners involved in the 
partnership participating in design and refinement activities as well as 
implementation ( Supovitz, 2013 ). In DBIR, the grounds for introducing 
modifications and testing them in new implementation cycles are var-
ied. They may include prior research, developers’ insights, and users’ or 
teachers’ suggestions. Controlled experiments may be run, but in contrast 
to translational research, DBIR research–practice collaborations believe 
they are required only for major changes or choices involving significant 
risk if the wrong option is chosen ( Means & Harris, 2013 ). 



90 Collaborative Applications of Data Mining

 In contrast to the basic assumption underlying lists of “effective prac-
tices” or the What Works Clearinghouse of interventions with research 
evidence, the assumption behind DBIR is that educational interventions 
are not fixed objects but sets of practices that will be adapted to local cir-
cumstances and can be expected to undergo modifications and, hopefully, 
improvements throughout their lifespan ( Datnow, Hubbard, & Mehan, 
1998 ;  Means & Harris, 2013 ). 

 Under the DBIR model, as is true in implementation research in gen-
eral, the implementation of an intervention in particular settings is itself 
an object of research and a critical part of understanding how to scale an 
intervention without diluting its effectiveness. 

 Elements of DBIR that are central to the approach taken in our own 
work are: 

 • Joint negotiation of the research focus and co-design of the interven-
tion involving researchers and practitioners working together and 

 • Extended periods of collaboration involving multiple cycles of design, 
implementation, measurement, and analysis. 

 Improvement Science for Education 

 In recent years, a number of education researchers have taken up the chal-
lenge of studying variations in the contexts and the ways in which educa-
tion interventions (i.e., practices and programs) are implemented in order to 
try to understand and address this variability. For example, a new inquiry-
oriented science curriculum may result in better student learning outcomes 
in classrooms of teachers with a strong science background and the belief 
that all students can learn abstract concepts but not in the classrooms of 
teachers without these characteristics. If we can find patterns in terms of 
the circumstances under which a practice produces good outcomes, we can 
offer valuable insights about  when  and  how  it should be used, or alterna-
tively, factors that should be addressed before the intervention is introduced. 

 Influential examples of this kind of work have been provided by the 
Carnegie Foundation for the Advancement of Teaching, which has artic-
ulated and applied what it calls “improvement science for education” 
under the leadership of foundation president Tony Bryk. The foundation’s 
work has drawn on the tradition of improvement science in the health-
care industry as practiced by the Institute for Healthcare Improvement, 
which in turn has drawn on ideas from TQM as well as “90-day sprints” 
in which a change idea is generated, tried out on a very small scale, and 
evaluated to determine whether or not it is worth further refinement and 
broader implementation. 

 As articulated by Bryk and colleagues ( e.g., Bryk & Gomez, 2008 ), the 
core phenomenon that improvement science seeks to address is variation 
in outcomes. Obviously, educational outcomes are not the same for every 
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student or for every class or school. Educational researchers have spent 
years examining alternative approaches to instruction, and testing 
whether students experiencing a new approach, on average, have better 
outcomes than students who do not experience it (i.e., than those stu-
dents experiencing “business as usual”). Bryk and colleagues argue that 
finding educational approaches with better average outcomes than the 
status quo is not enough. As shown in  Figure 5.1 , even when you have 
an educational approach for which the mean outcome for the treatment 
group is superior to that for the comparison group, there will still be stu-
dents who received the new approach but did not attain a good outcome. 
In the case illustrated by  Figure 5.1 , this would be students in the right-
hand distribution whose scores did not exceed the proficiency standard. 
Improvement science recognizes that if our goal is to produce reliably 
positive outcomes for all students, we need to know much more about 
the multiple factors producing educational outcomes and when and how 
to intervene in different contexts. 

 Fundamental to the practice of improvement science is the use of three 
guiding questions: 

 • What is the specific problem we are trying to address? 
 • What change could be made to lessen that problem? 
 • How can we tell whether the change we have tried is an improvement? 

 Like DBIR and other Total Quality approaches, such as Six Sigma and 
Deliverology, improvement science in education stresses the importance 

Figure 5.1 Student Achievement Scores by Educational Treatment Condition
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of multiple cycles of change implementation, measurement of processes 
and outcomes, analysis of those data, and planning further revisions 
( Bryk, Gomez, Grunow, & LeMahieu, 2015 ). In theory at least, each new 
implementation brings some degree of improvement, and the more cycles 
you can implement, the more positive the results. 

 Also similar to DBIR practitioners, those applying improvement science 
to education stress the importance of collaborative improvement efforts 
involving researchers and education practitioners working together over 
a sustained period of time. The Carnegie Foundation’s conception of 
improvement science goes one step further than DBIR does, however, in 
highlighting the importance of having multiple educational institutions 
working on the same problem in parallel in a networked improvement 
community ( Bryk, Gomez, & Grunow, 2010 ). 

 The improvement science work of the Carnegie Foundation has influ-
enced our own practice in: 

 • Its focus on variation as a key phenomenon to be understood and as a 
source of hypotheses concerning how outcomes might be improved; 

 • The three overall questions that drive the research–practice collabo-
ration; 

 • Its use of an articulated set of practices and standard tools to support 
the collaborative work of researchers and practitioners as they seek 
to identify and understand the problem to be studied and aspects of 
the education system that influence it; and 

 • The emphasis on “practical measures” defined in terms that make 
sense to practitioners and at a level of specificity that is actionable 
within the settings where educators work. 

 Influence #3: Big Data in Education 

 All of the types of research–practice partnerships we have described make 
use of data both to identify and understand problems of practice and to 
be able to gauge whether new programs or changes in practice are result-
ing in progress toward the intended goal. But for the most part, these col-
laborations have not used what we would call big data or data stemming 
from digital learning environments, administrative data systems, or sen-
sors and recording devices. Only in recent years have we seen very large 
numbers of students doing extensive portions of their learning online and 
thereby producing datasets ripe for data mining and analytics. 

 The varied uses for detailed system log data from digital learning sys-
tems have been recognized for some time. The Open Learning Initiative 
(OLI), for example, depicted multiple uses of micro learning data from 
online learning systems through the graphic shown in  Figure 5.2 . Founded 
in 2002 at Carnegie Mellon University (CMU), the OLI developed learning 
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systems for college courses such as Statistics, Biology, and Physics. OLI 
researchers explained how the data gathered automatically as students’ 
interactions with their learning software could be useful not only for deriv-
ing measures of student performance but also for informing improvements 
to the learning software, providing feedback to instructors teaching a class 
using the software, and exploring basic questions about how people learn. 

 Some of the earliest efforts to capitalize on this kind of data were 
undertaken at Carnegie Mellon University, not only in the OLI project 
but also in the university’s National Science Foundation-funded Pitts-
burgh Science of Learning Center (PSLC) and in DataShop, a repository 
of de-identified student-level data from multiple implementations of 
intelligent tutoring systems. One example of how CMU researchers use 
system log data to shed light on ways to improve their tutoring systems 

Figure 5.2  Open Learning Initiative Use of Feedback Loops Based on Student Log File 
Data
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was described in  Chapter 1 . Here we provide a second example of how 
CMU researchers use detailed log file data to examine learning sequences 
in the form of learning curves. 

 Recall that CMU tutoring systems are designed using a detailed cogni-
tive analysis of the expertise that students need to acquire. Carnegie Mel-
lon researchers express that expertise in terms of knowledge components 
(KCs). One of the types of data that researchers extract from the tutoring 
system log files is whether the learner made an error or answered cor-
rectly on each presentation of a problem involving a given KC. Summing 
the number of errors made on the first trial across all learners yields an 
error percentage for the first trial with the KC, and the same procedure 
can be applied to the second and subsequent trials to develop an error 
curve like that shown in  Figure 5.3a . Typical error or learning curves 
start relatively high, drop rapidly, and then level off at a low level, as 
illustrated in  Figure 5.3a . Sometimes, however, the learning curve is much 
more jagged and does not trend toward zero, like the one in  Figure 5.3b , 
suggesting that some problems related to the KC are harder than others. 
CMU learning scientists treat these aberrant curves as indications that 
their initial analysis of what is being measured by the practice items was 
not quite right. Sometimes, when researchers inspect all the problems 
mapped to a KC, they find that some of the problems appear to have 
some additional components not found in others. 

Note: The Y-axis is the
average error rate across
students and the X-axis
is learning opportunities.
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Figure 5.3a Examples of Cognitive Tutor Knowledge Component Learning Curves

Source: Koedinger et al., 2013.
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Figure 5.3b Examples of Cognitive Tutor Knowledge Component Learning Curves

Source: Koedinger et al., 2013.
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 An example comes from CMU’s work with learning curves for com-
posite area problems, like figuring out what area is left after a circle is 
cut from a square, in the Cognitive Geometry Tutor (see  Figure 5.4a ). 
Koedinger et al. examined the problems in the practice set for this KC 
and found that some of them directed the student’s attention to the need 
to decompose the figure before trying to compute the area in question, 
while others did not. When working with the former, “scaffolded” items, 
students were not required to plan their problem solving approach. Other 
problems required planning in addition to area computation and sub-
traction. Accordingly, the researchers revised their cognitive task analysis 
to specify multiple KCs related to composite area problems, including 
one for setting the subgoals for decomposing the complex figure. The 
revised task analysis was then used as a basis for revising the Cognitive 
Geometry Tutor. The new version treated figuring out how to decompose 
a geometric shape into simpler shapes whose area could be computed 
using known formulae as a separate KC. ( Figure 5.4b  shows a problem 
designed to tap this additional KC.) 

 To test whether their revision of the tutoring system was indeed an 
improvement, Koedinger and colleagues then conducted an experiment 
with 96 high school students assigned to use either the new version of 
the tutor or the old one. They found that students using the new version 
of the Cognitive Geometry Tutor reached mastery on the tested skills 
more quickly and that they performed better on items related to problem 
decomposition within a paper-and-pencil post-test. 

Figure 5.4a  Example of Original Version of Composite Area Problems in the Cognitive 
Geometry Tutor

Source: Koedinger et al., 2013.
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 CMU researcher Ken Koedinger and his colleagues describe this kind 
of research as “closing the loop.” They point out that much of the work 
in educational data mining has focused on developing cognitive models 
that enable making accurate predictions about future learning without 
taking the additional steps of designing interventions based on those mod-
els and demonstrating that the interventions actually improve learning 
( Koedinger & McLaughlin, 2016 ). Practitioners of data mining in many 
application areas are satisfied with demonstrating their ability to make 
predictions with a high level of accuracy, without trying to hypothesize 
underlying causes. Koedinger and colleagues argue that such “black box” 
approaches are not appropriate for educational data mining. They reason 
that it’s important to be able to interpret predictive relationships because 
it is the interpretations that will lead to better understanding of learning 
and domain content as well as advances in instructional design. In addi-
tion, it is the interpretation that will guide the application of the predictive 
model to new datasets. 

 The Carnegie Mellon learning science research projects have bene-
fited from having multidisciplinary teams, including faculty who were 
experts in the course subject matter, instructional designers, instructors 

Figure 5.4b  Example of Original Version of Composite Area Problems in the Cognitive 
Geometry Tutor

Source: Koedinger et al., 2013.
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using the learning software, learning science researchers, and data sci-
entists all working together. Relatively few other learning technology 
R&D efforts before or since have brought together such a range of 
expertise. More commonly, particularly in the commercial sphere, sub-
ject matter experts and instructional designers develop learning tech-
nology products, and data scientists are brought in at a later time to 
identify ways to exploit user log data to identify opportunities for mak-
ing the digital learning experience more appealing, with the goal of 
expanding the number of people who use the software for extended 
time periods. The primary goal for data mining in this case is similar to 
that in e-commerce—to increase the “stickiness” of the online experi-
ence so that people spend more time with it. Reducing even modest bar-
riers to use (e.g., being able to do what you want with one click is much 
better than needing two or three) and personalizing the experience are 
typical goals in this work. 

 Other work aimed at digital learning product improvement has lever-
aged the existence of massive numbers of users to perform A/B tests. The 
Khan Academy, for example, has an A/B testing framework that enables 
the organization to randomly assign users to one of two or more ver-
sions of their software (i.e., version A or version B) with just a single line 
of code. Developers can determine what percentage of their users they 
want to receive each version of the software, and a dashboard charts user 
statistics from the two groups in real time.  Box 5.2  illustrates how Khan 
Academy has used random assignment of subsets of their users to version 
A and version B of their software to find out how specific changes to their 
software would affect learner behavior. 

 In contrast, academic data science researchers have focused their efforts 
on developing methods that can be used with log file data from different 
kinds of learning systems, including the extremely large datasets gener-
ated by massive open online courses (MOOCs). In addition to describing 
the development and validation of computational tools and techniques, 
academic publications in the field focus on criteria for determining the 
most appropriate technique for different types of datasets. Educational 
data mining experts note that educational datasets differ from those typi-
cally encountered in other fields in that (1) data typically are more dif-
ficult to obtain because they must be secured from multiple organizations 
and in a climate of strong concerns over student privacy; (2) data on a 
single individual are often obtained from an extended time period, raising 
issues of how to combine data points into chunks that can be interpreted; 
and (3) data are hierarchical and non-independent as students are clus-
tered within classrooms that are clustered within schools and districts, 
with each grouping exerting effects on what students do (Romero, Ven-
tura, Pecheniziy, & Baker, 2011). 

 The three influences described and discussed in this chapter provided 
the foundation for our initial thinking about collaborative data-intensive 
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  Box 5.2   Combining Analytics and A/B Testing 
to Refine the Khan Academy Learning 
Platform 

 From its early days as an organization, Khan Academy has sup-
ported its learning technology design and implementation with Wall 
Street–style data analytics. In 2011 Khan Academy brought on Jace 
Kohlmeier, who was previously a trading systems developer at a 
hedge fund, as its “Dean of Data Science.” 

 Kohlmeier designed Khan Academy’s A/B testing framework to 
enable the organization to randomly assign users to one of two or 
more versions of the software with a single line of code. Develop-
ers could determine what percentage of their users they wanted to 
receive the experimental version, and a dashboard would chart user 
statistics from the two treatment groups in real time. Because Khan 
Academy has tens of thousands of active exercise users doing several 
million problems each day, developers can accrue statistically signifi-
cant data very quickly. For a change with a large impact, Kohlmeier 
reported they can collect results in an hour (i.e., because large effects 
can be detected with small samples). But many of Khan Academy’s 
experiments involve changes with smaller effects and hence take lon-
ger. In addition, the organization likes to run experiments for a week 
or so because of user flow cycles; more adult and self-driven learners 
use Khan Academy in evenings and on weekends. 

 One of Kohlmeier’s first projects with Khan Academy was to look 
at how the system determined that a learner had reached proficiency 
on a problem set topic. The system was using a simple but arbitrary 
heuristic: If the user got 10 problems in a row correct, the system 
decided the user had mastered the topic. Kohlmeier examined the 
proficiency data and found that the pattern of correct/incorrect 
answers was important. Learners who got the first 10 problems in 
an exercise set correct performed differently later on than did users 
who needed 30–40 problems to get a streak of 10. 

 Kohlmeier built a predictive model based on estimating the like-
lihood at any point during an exercise set that the next response 
would be correct. The system was then changed to define mastery of 

improvement. They shaped the kinds of collaborations we have sought 
with education partners and sparked our interest in combining data sci-
ence and improvement science methods. We will close this chapter with 
an extended hypothetical example designed for the purpose of illustrat-
ing the differences between CDI and its close cousins, data-driven deci-
sion making and design-based implementation research. 
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a problem set as the point where a user has a 94 percent likelihood 
of getting the next problem correct. 

 This change in the mastery algorithm meant that some users had 
to spend more time on an exercise set. By monitoring user data 
after making the change, Khan Academy analysts were able to see 
that users were willing to devote the extra effort. At the same time, 
the new criterion allowed fast learners to gain credit for mastering 
material after doing as few as five problems, enabling them to cover 
more material in a given timespan. The Khan Academy team used 
A/B testing to compare the old and the new models for determin-
ing mastery on several metrics. They found that the new mastery 
model was superior in terms of number of proficiencies earned per 
user, number of problems required to earn those proficiencies, and 
number of exercise sets attempted. 

 In 2014 Khan Academy reworked their internal A/B testing tool 
( Wang, 2014 ). Their revised tool makes it even easier to run experi-
ments on small interface changes intended to affect specific metrics, 
such as the number of problems attempted, while also supporting 
more complex experiments and custom analyses. To help every-
one in the organization keep track of the many A/B experiments 
going on at any one time, the new system requires every experiment 
to have an “owner,” a descriptive title, and an explanation of the 
hypothesis being tested. When analysis of experimental results is 
completed, the conclusions are entered into the system, and instant 
messages go out to alert all staff members of the new finding. Khan 
Academy has applied for a patent on its A/B testing tool. 

 Although a great proponent of A/B testing and data mining, 
Kohlmeier, who left Khan Academy in October 2014, notes the limi-
tations of those approaches. It is difficult to use A/B testing to guide 
big changes, such as a major user interface redesign: Too many inter-
dependent changes are involved to test each possible combination in 
a separate experiment. 

 Sources: Interview of Jace Kohlmeier conducted by Barbara Means in 2012 
for the report  Expanding Evidence for Learning in a Digital Age  ( Means, 
2014 ) and interview of Alan Pierce, the software engineer who reworked 
the A/B testing application in 2014, conducted by Kendrick  Wang (2014 ). 

 An Illustration of Collaborative 
Data-Intensive Improvement 

 Why would a school, college, or larger education system choose to get 
involved with all the complexities of learning analytics and improvement 
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processes? We offer another hypothetical example of the power of this 
approach relative to the alternatives. Suppose a large school district has 
identified achievement gaps in mathematics among middle schoolers as a 
key problem. District personnel reason that identifying lower-achieving 
eighth-grade students who do not appear to be on track to take Algebra 
I in grade 9 and giving them extra or different kinds of mathematics 
instruction could reduce disparities in the percentages of students from 
different subgroups who go directly into Algebra I at the start of high 
school. They know this is important because students who do not suc-
cessfully complete Algebra I by the end of grade 9 are much more likely 
to drop out of high school ( Silver, Saunders, & Zarate, 2008 ). 

 Let’s imagine how the various traditions described in this chapter 
might play out in a local middle school within this district. 

 Suppose the school’s new principal is a devotee of data-driven deci-
sion making. Her first inclination would be to gather and examine avail-
able data. First, she might want to examine the school’s algebra readiness 
assessment scores for rising eighth graders. Accustomed to disaggregating 
data by gender, race/ethnicity, language learner status, and eligibility for 
free/reduced-price lunch eligibility, she notes that like the district’s mid-
dle schools as a whole, her school has smaller proportions of its African 
American, Latino, English learner, and low-income students meeting the 
district’s criterion for being algebra ready. Suppose the “gap” between 
African American students’ readiness scores and those of white and Asian 
students at this school is similar in size to that found in the district as a 
whole, but the gap between scores for Latino and English learner stu-
dents and those of whites and Asians who are native English speakers is 
even larger than the district average. The principal creates a set of charts 
illustrating the algebra readiness gaps and presents them at a staff meet-
ing, along with a reminder that reduction of achievement gaps and get-
ting as many students as possible through Algebra I by the end of grade 
9 are district priorities. 

 So what to do? The principal might call in the head of the school’s 
math department to discuss the data. The department head points out 
that their school has a particularly large concentration of English learn-
ers recently arrived from Central America and that many of these stu-
dents struggle with the language used in the mathematics textbooks and 
the standardized tests. At a conference he heard about a newly released 
learning software product that offers middle school mathematics instruc-
tion in both English and Spanish. Students can work at their own pace 
and go back and forth between presentations in the two languages. The 
principal and the math chair decide to purchase the new software for the 
school’s learning lab and to require all Latino eighth graders who did not 
test as “proficient” on the state mathematics test at the end of grade 7 
to register for a “booster” math course to be spent working with the 
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software in the lab. At the end of the year, all eighth graders are tested 
on the algebra readiness exam, and the principal is disappointed to find 
that the percentage of Latino students qualifying for Algebra I the next 
year has gone up slightly but not very much. She decides to abandon the 
learning lab strategy. 

 This vignette is fictitious but not at all unrealistic. Educators are using 
administrative data—mostly test data and information about student 
backgrounds—to suggest areas in need of improvement. But notice that 
their efforts are pretty much atheoretical. School personnel respond to 
pressure from the district office in choosing what problem to attend to 
and what data to examine. Districts are concerned with outcomes, and 
hold schools responsible for them, often without specifying how those 
outcomes are to be improved or providing supports for improving them. 
Looking at the outcome data motivates staff to try something new but 
does not really guide them in the choice of what to try. And when the new 
program does not immediately have an impact on the outcomes, it is hard 
to say why better outcomes did not emerge. 

 DBIR could help address this problem by bringing the perspective and 
skills of researchers into the picture to complement the strengths of school 
staff. Having committed to working with practitioners on the problem 
of improving Latino and English learner students’ algebra readiness, for 
example, researchers would bring insights from prior research to bear in 
a more extended process of hypothesizing the sources of English learn-
ers’ difficulty with pre-algebra mathematics and brainstorming potential 
approaches for addressing the problem and not just the symptom (i.e., 
test scores). The literature on the cognitive challenges posed by middle 
school mathematics and the additional difficulties faced by groups ste-
reotyped as doing poorly in math and by those who are not proficient 
in the language of instruction is too large to summarize here. The main 
point is that researchers can add learning science principles and findings 
from the research literature to the insights practitioners have gained from 
firsthand experience and the data available from assessments and admin-
istrative records. 

 Suppose after experiencing disappointment with the learning lab course 
for booster math, the principal seeks out researchers from the local uni-
versity to partner with for collaborative design work. A starting place is 
often the co-development of a theory of action. The desired end product 
or outcome is having a high proportion of Latino and English learning 
students ready for algebra at the end of grade 8. To design an interven-
tion to improve this outcome, one needs to understand what is required 
to become algebra ready and to identify changes in practice that could 
put those elements in place.  Figure 5.5  shows an example of a theory of 
action for algebra readiness. Note that it decomposes the desired out-
come of algebra-qualifying assessment scores into the knowledge, skills, 
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Figure 5.5 Theory of Action for an Algebra-Readiness Intervention

and attitudes that are needed to achieve those scores. Before leaping to a 
conclusion about what new practices to try, a team would want to look 
for additional data to help identify the area in which there are widespread 
problems. Do students lack fluency in executing basic arithmetic proce-
dures such as multi-digit division? Are they missing concepts such as pro-
portion and rational numbers? Is it simply the added burden imposed 
when trying to read in a partially familiar language? Or are these students 
anxious about their mathematics performance to such an extent that it 
interferes with their test performance? 

 A DBIR collaboration around improving algebra readiness would likely 
deepen educators’ thinking about the multiple potential sources of stu-
dent difficulty and the team would then work together to test hypotheses 
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about sources of difficulty and then to identify or co-design an interven-
tion to address the issues that appear to hinder mathematics learning. 

 We see this as an important contribution of DBIR but acknowledge 
that compared with improvement science and TQM, design-based imple-
mentation research is a set of principles without specific tools for sup-
porting the work. Different DBIR researchers implement the principles in 
their collaborations with educators in very different ways (see the chap-
ters in  Fishman, Penuel, Allen, Cheng, & Sabelli, 2013 , for examples). 
In contrast, improvement science has a formalized set of steps and tools 
such as “fishbone” and “driver diagram” templates that help collabora-
tors articulate and document their implicit theories about the main fac-
tors producing outcomes in their current and ideal systems. 

 Both DBIR and improvement science embrace the notion of iterative 
cycles of implementation, data collection and analysis, and refinement 
of practice. We recognize that it is much easier to declare a commitment 
to continuous improvement than to really put it in place. One barrier is 
the time frame on which educational outcome data are available. In our 
vignette, the principal waits until the end of the year to see scores on the 
district’s algebra readiness assessment. If they have risen somewhat but 
not dramatically, the principal can modify the program and try it again 
the next year, but this is a very slow process given all the possible modi-
fications that might be made. In industry, where improvement science 
had its origins, there were daily measures of the key outcome of flawless 
products produced per hour that could be tracked over time and after 
each innovation was introduced. Many more improvement cycles could 
be implemented within a given year. 

 To really benefit from continuous improvement processes, you need 
to have continuous measures of process and ways to get quick feedback 
concerning the impact of a change made to the system. Achievement test 
scores come out just once a year. Interim or benchmark tests have become 
popular, providing assessment results at intervals of six weeks or so, which 
can help address this problem of knowing early whether or not you’re on 
the right track. But if you don’t have process measures to complement 
these outcome measures, you still have the quandary of not knowing  why  
benchmark test performance has or has not improved. 

 To really drive improvement, you need both (1) a well-articulated 
theory of the processes that produce the outcome you’re looking for and 
the potential barriers that must be removed and (2) detailed and fre-
quent data on the execution of those processes. CDI incorporates both 
of these qualities by tapping into new sources of data made available by 
the increasing use of technologies in schools. Borrowing techniques for 
working with practitioners from improvement science, CDI collabora-
tors lay out a detailed theory of the main factors producing the current 
outcomes. In our vignette, these would likely be multiple, including a 
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lack of fluency in arithmetic operations, difficulty comprehending instruc-
tion and assessment items using unfamiliar English terms, and lack of 
confidence about one’s ability to perform well on a mathematics exami-
nation. It is likely that sources of difficulty will be different for different 
students, suggesting that a “one size fits all” intervention would be less 
than optimal. The extra period in the learning lab might be retained, but 
in the next iteration, the first week or so could involve building a posi-
tive class culture and diagnosing the different vulnerabilities of different 
students. 

 For students who express high levels of math anxiety or susceptibility 
to stereotype threat, there are simple interventions that can be done in 
as little as a single class period and still have significant effects ( Cohen, 
Garcia, Apfel, & Master, 2006 ;  Cohen, Garcia, Purdie-Vaugns, Apfel, & 
Brzustoski, 2009 ;  Miyake et al., 2010 ). Some students might benefit from 
extra practice with software emphasizing executing arithmetic operations 
to the point where they can do them with fluency. Others might benefit 
from working in small groups with a bilingual teacher who focuses on 
concepts and has students solve problems as she watches and coaches, 
paying particular attention to language-based confusions. In all of these 
cases, a key activity will be collecting data on the execution of the strat-
egies (i.e., How much conceptual coaching did each student receive 
today?) and on student performance (i.e., How quickly can the student 
do 20 multiplication problems with 80 percent accuracy?). 

 For this CDI approach to be feasible, these data must be extremely easy 
to collect, and having students work in a digital environment is highly 
advantageous in this respect. But beyond collecting data, the improve-
ment team needs to analyze the data and make further refinements—in 
our vignette, each student’s areas of vulnerability should be repeatedly 
diagnosed and his or her learning plan revised as appropriate. At the 
same time, educators should be looking for ways in which they can better 
execute the various strategies. 

 Conclusion 

 This chapter has described the major antecedents for CDI coming from the 
productivity and quality improvement movement, efforts to combine edu-
cational research and practice, and data science. Our concluding vignette 
provided a portrayal of the kinds of information and support CDI can 
provide. While hypothetical, the vignette was inspired by real experiences 
working with and observing education institutions. In the chapters that 
follow, we will go beyond this fictional vignette to describe real CDI col-
laborations in order to illustrate the stages, benefits, and challenges of this 
kind of work. 
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 As the room filled up, those new to the gathering saw a modern con-
ference room that served as both a workspace and a cafeteria. After 
nearly two days of work, three teams, each made up of researchers and 
practitioners from a Charter Management Organization (CMO) based 
in the Bay Area, scrambled to put the finishing touches on their presenta-
tions. This day was preceded by nearly two and half years of work. The 
path connecting the early ideas of a partnership between researchers 
and practitioners around the use of data-intensive research methods was 
not without twists and turns. But at the heart of the partnership, from 
very early on, was a sense of trust and mutual benefit that helped mem-
bers of the partnership lean into the twists and turns that accompanied 
using new forms of data to improve teaching and learning in classrooms 
throughout the CMO. 

 The teams preparing their final presentations were formed on the first 
day of the two-day event, which the partners called a “data sprint.” The 
sprint was an opportunity for the partners to come together to jointly 
analyze data from digital learning environments and administrative 
data systems. Three teams were organized around three driving ques-
tions: What is the relationship between external and internal measures 
of student learning and achievement? What is the relationship between 
students’ activity in a digital learning environment and external measures 
of student achievement? How many distinct learning behaviors can be 
measured using digital learning environment data? The sprint was struc-
tured as a two-day event in order to allow sufficient time to analyze 
digital learning system data and co-develop follow-up actions, such as 
new instructional routines that teachers could later implement in their 
classrooms. The first of three teams began its presentation on the degree 
to which the CMO’s own assessments correlated with external measures 
of students’ college readiness, such as standardized test scores. Nearly 
every component of the presentation, as well as the accompanying analy-
sis, had been a collaborative undertaking, from the merging of data files 
and transformation of variables to the interpretation of results. 

 Chapter 6 

 Supporting Conditions for 
Collaborative Data-Intensive 
Improvement 
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 At the end of the presentation, the first team laid out the next steps they 
would take based on what they had learned from their analyses. Using sim-
ple scatterplots with carefully chosen reference lines, they had identified a 
group of students who were behind on both internal and external measures 
of college readiness. The second and third teams, similarly, identified pre-
viously unnoticed patterns in students’ use of the CMO’s digital learning 
environment. For example, they found that students who tended to follow 
up a poor performance on an assessment by accessing an available learning 
resource did better in the course overall than students who tended to fol-
low up a poor performance by retrying the assessment. These presentations 
would launch months of work examining the patterns identified during 
the sprint across multiple grades, content areas, and over wider timescales. 

 Getting to a point where researchers and practitioners were able to 
jointly engage in data-intensive research did not happen overnight. New 
knowledge, skills, and dispositions needed to be developed by both 
researchers and practitioners. In this chapter, we describe our approach 
for engaging in data-intensive research–practice partnerships (RPPs). 
Across multiple partnerships, we have engaged in two overarching activ-
ities: First, we collaborated with an educational organization around 
using data-intensive research methods to explore the organization’s own 
data. Second, we explored ways of improving how we worked with each 
educational organization. These two activities served as the building 
blocks of a multi-year, multi-project research agenda aimed at devel-
oping a repeatable approach for collaborating with practitioners, what 
we have come to refer to as  collaborative data-intensive improvement  
(CDI). We will return to the CMO described in the introduction of this 
chapter and describe how we set the foundation for the data sprint over 
multiple years of collaboratively analyzing the CMO’s data and working 
to improve the partnership over time. Before returning to the CMO and 
introducing a second partnership, we briefly describe the origin of CDI 
through the lens of prior efforts to use data in schools, building on the 
overviews provided in the previous chapter. 

 Origins of Collaborative Data-Intensive 
Improvement 

 Working with practitioners to engage in data-intensive research is not 
a new idea. Groups such as the Youth Data Archive (YDA) at the John 
W. Gardner Center for Youth and Their Communities regularly work in 
close collaboration with practitioners to develop research questions, inter-
pret analyses, and co-develop changes ( Russell, Jackson, Krumm, & Frank, 
2013 ). The “data for good” movement through organizations like Data-
Kind and Bayes Impact has demonstrated the potential for bringing together 
data scientists and practitioners from non-profit and non-governmental 
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organizations. And foundations like the Ann E. Casey Foundation have 
funded efforts to make use of integrated data systems from non-profit 
and governmental service providers to better understand issues facing 
youth and families. Thus, there are multiple examples of researchers, data 
scientists, and practitioners coming together to analyze and take produc-
tive action based on analyses of large volumes of data from, in particular, 
administrative data systems. 

 As we began thinking about how to use new sources of data with prac-
titioners, we were drawn to the work of organizations like the Harvard 
Strategic Data Project, DataKind, and YDA (e.g.,  McLaughlin & Lon-
don, 2013 ). Across such standout organizations, though, we saw two 
gaps that had yet to be addressed when we started thinking about data-
intensive RPPs in 2014. First, most if not all partnerships were struc-
tured around administrative data systems—we wondered what could be 
gained by forming partnerships around data from digital learning envi-
ronments, alone or in combination with data from other sources. Second, 
the work involved in actually engaging in collaborative data-intensive 
research had not been detailed within the existing literature—we set out 
to develop in-depth accounts of how to engage in collaborative data-
intensive research to help subsequent partnerships based on our lessons 
learned. We addressed these two issues by launching a series of partner-
ships, consulting prior research where it was available, and reflecting on 
what worked and what did not. Within each partnership, we engaged in 
a style of inquiry referred to as design-research, which we describe later, 
and through a series of design-research cycles we set out to identify  sup-
porting conditions  and  key phases  for engaging in CDI. 

 In education, design research maps closely onto the development of the 
learning sciences ( Bransford, Brown, & Cocking, 2000 ). The key insight 
of this approach, going to back to the pioneering work of Ann  Brown 
(1992 ) and Allan  Collins (1992 ), is that evidence collected under tightly 
controlled conditions, such as laboratory settings typical of early psycho-
logical research, may not in fact generalize well to the day-to-day reali-
ties of schools. This insight, which has been wrestled with by many in 
the field of education, developed into a methodology where researchers 
use theory to develop interventions that are then tested in real learning 
environments. Through iterative refinement and collaboration with prac-
titioners, design research involves creating a “humble” theory for why 
an intervention worked ( Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003 ). Many learning scientists and methodologists have weighed in on 
the pros and cons of design research, and it is not an approach without 
critics ( Kelly, 2004 ;  Shavelson, Phillips, Towne, & Feuer, 2003 ). Yet for 
some, including us, it offers a way of approaching practical educational 
problems while working to build theory ( Bell, 2004 ). The key unit of 
analysis in traditional design research is a learning environment, such 
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as a classroom or after-school learning experience. Through working in 
real-world environments, the goal is not to isolate individual causes for 
why an intervention worked or not but rather to attend to, as best as 
possible, how an intervention affects and is affected by the myriad com-
plexities within each setting ( Barab & Squire, 2004 ). In our work, the 
key units of analysis are the partnerships themselves and how the work 
of the partnership translates into changes in the ways that practitioners 
interact with learners. 

 At the outset of our efforts to develop data-intensive RPPs, we simulta-
neously embraced and questioned the assumption that data from digital 
learning environments would be beneficial to understanding and improv-
ing learning environments. As we noted previously, up to this point in 
the development of the fields of educational data mining and learning 
analytics, there were only a handful of collaborations between research-
ers and practitioners using data from digital learning environments (e.g., 
 Krumm, Waddington, Teasley, & Lonn, 2014 ). Examples of collabora-
tions built around data residing in administrative data systems were more 
prevalent, and a number of these involved large urban school districts 
developing early warning systems with university partners (e.g.,  Allen-
sworth & Easton, 2005 ;  Balfanz, Herzog, & MacIver, 2007 ). The paucity 
of meaningful collaborations around digital learning system data was 
unfortunate given the pitched rhetoric around “big data in education,” 
which carried the implication that data from digital learning environ-
ments was somehow a self-activating resource. The process for translat-
ing data into new actions that teachers would take in classrooms was 
either ignored or assumed to be trivial ( Piety, 2013 ). While we embraced 
the potential value for newly emerging types of data, we questioned how 
much could truly be accomplished without having educational data sci-
entists move closer to practice and practitioners move closer to the work 
of educational data science. 

 There is a long history of attempts to bridge research and practice in edu-
cation, of which design research is but one example ( Lagemann, 2000 ). 
And while it is easy to say that researchers should work more closely 
with practitioners, and vice versa, consistently doing so has proven to 
be challenging. To inform efforts at bringing researchers and practitio-
ners together, we focused on the focal activity in which researchers and 
practitioners would be engaged, namely, planning for, collecting, and 
interpreting data, commonly referred to as data-driven decision mak-
ing (DDDM; see  Chapter 5 ). Explicit models for engaging in DDDM 
around standardized tests and benchmark assessments existed (e.g., 
 Boudett, City, & Murnane, 2013 ;  Bambrick-Santoyo, 2010 ). However, 
the evidence that decisions were informed by data and that these deci-
sions had ultimately contributed to improved instruction was far from 
clear ( Coburn & Turner, 2011 ;  Hamilton et al., 2009 ). One reason for 
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the limited number of clear cases may have had much to do with the 
ultimately weak theory of change associated with most DDDM models, 
which involves educators—alone—developing and deploying capabilities 
necessary for setting goals, determining causes for success and failure, 
implementing new approaches, monitoring effectiveness, and reflecting 
on the overall DDDM process ( Penuel & Shepard, 2016 ). As many have 
pointed out, there are multiple potential points of failure in this theory, 
and many researchers who have studied how teachers actually worked 
with data found that data rarely “drove” decisions because data were 
often difficult to access and lagged too far behind the processes that prac-
titioners could affect ( Little, 2012 ). Moreover, the interpretations that 
teachers made of the data were affected by numerous tangential factors 
( Turner & Coburn, 2012 ). The question for us, which ran headlong into 
assumptions that “bigger” data would lead to “better” decisions, was as 
follows: How would large, complex datasets and less well understood 
machine and statistical learning techniques interact with these underlying 
dynamics of data use in schools? 

 An essential place to start in answering this question was to bring 
researchers and practitioners together in a partnership that drew on the 
respective skills and expertise of each. It is easy to assume that schools 
can and should take on this work by themselves or that data scientists 
can overcome the challenges of data use in schools absent knowledge of 
schools or the active participation of practitioners, but the track record 
for these assumptions is not great. To understand how complex data-
sets and new analytical techniques could be used in schools, we iden-
tified opportunities for improvement within the existing literature and 
launched several partnerships organized around translating data from 
digital learning environments into concrete changes; and in reflecting 
on the multiple partnerships in which we were working, we set out to 
develop an overall approach for engaging in CDI. 

 Two Data-Intensive Research–Practice Partnerships 

 We opened this chapter with a description of an experience from one of 
two early CDI partnerships that we launched. The CMO that participated 
in the data sprint and the thousands of hours of collaborative work that 
preceded it was Summit Public Schools. Summit is a CMO that operates 
schools in the Bay Area and in the state of Washington. Summit has been 
recognized as an innovative CMO based in no small part on its deep 
integration of technology and focus on providing personalized learning 
experiences to all its students ( Murphy et al., 2014 ). The second partner-
ship that we describe later involves our work with the Carnegie Founda-
tion for the Advancement of Teaching and the Carnegie Math Pathways. 
As described in Chapter 5, the Carnegie Foundation for the Advancement 
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of Teaching has become the central organization for advancing the use of 
improvement science in solving long-standing educational problems and 
inequities. As part of their field-building efforts, Carnegie launched the 
Carnegie Math Pathways, which is a unique network of 2- and 4-year 
colleges and universities focused on solving the developmental math crisis 
in the United States ( Bryk, Gomez, & Grunow, 2010 ). 

 Summit Public Schools 

 In 2003, Summit began as a single high school, Summit Preparatory Charter 
High School in Redwood City, California. Since then, Summit has grown to 
11 schools and a national program referred to as  Summit Learning . Core 
to the Summit model of teaching and learning is a focus on personalization 
and strong relationships between students and teachers combined with giv-
ing all students a rigorous, college preparatory curriculum. A typical day at 
a Summit school is broken up into 90-minute blocks during which students 
engage in project-based learning in core subject areas. Project-based learn-
ing is an instructional method where students gain knowledge, skills, and 
dispositions through authentic, engaging, and complex problems ( Larmer, 
Mergendoller, & Boss, 2015 ). In addition to project-based learning blocks, 
students engage in “personalized learning time” and weekly mentoring ses-
sions. Personalized learning time offers students an opportunity to work 
on core academic content at their own pace, and mentoring sessions are 
times when students work one-on-one with a teacher who advocates for 
them and helps them develop self-directed learning skills. 

 Every Summit student is provided with a Google Chromebook and 
access to a customized learning management system (LMS) referred to as 
the  Summit Learning Platform . Students use the platform in all of their 
courses and for a majority of their overall learning activities. For exam-
ple, students use the platform during personalized learning time to access 
required assessments and teacher-curated resources, in the form of “play-
lists.” Completing a playlist involves passing a 10-item content assessment 
that students can take as many times as they need and whenever they feel 
ready to take the assessment. Students interact with playlists during per-
sonalized learning time, which includes two 90-minute blocks throughout 
the week and for extended periods of time on Fridays, which is also when 
students interact with their individual mentors. Through the platform, 
Summit students also can work on elements of projects and can commu-
nicate with their teachers about their progress on specific elements of a 
project. From its founding in 2003, Summit has created a learn fast culture 
in which all elements of the student learning experience—from mentoring 
to the  Summit Learning Platform —are continuously refined over time. 

 Our partnership with Summit began in the summer of 2014. Prior to 
the start of the partnership, Andy and a senior leader at Summit had 
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participated in a national conference on the topic of personalized learn-
ing. At the conference, Andy and the then Chief Information Officer for 
Summit Public Schools discussed the multiple research projects in which 
they had been a part. Summit was an early adopter of multiple technolo-
gies and as a CMO they had participated in multiple studies on how they 
used technology to support teaching and learning. Summit staff lamented 
the fact that researchers’ insights and efforts were often directed toward 
writing reports, as opposed to helping Summit staff grow and improve. 
This observation led the two to jot down the basic outline for a partner-
ship organized around the idea of analyzing data from Summit’s digital 
learning environments for the purpose of improving teaching and learn-
ing at Summit. A few follow-up phone calls later, the partnership between 
Andy and Summit had expanded to include Alex Bowers from Teachers 
College, Columbia University. 

 In the following sections, we provide a chronological description of our 
partnership with Summit Public Schools. Throughout the project, the 
participating researchers met regularly to reflect on the partnership and 
to clarify lessons learned about the  supporting conditions  for engaging in 
collaborative data-intensive research. The goal of identifying these con-
ditions was to help subsequent partnerships launch and organize their 
own work. Design-research cycles, like those described previously, were 
organized around key events such as initial brainstorming meetings and 
subsequent meetings where members of the partnership would come 
together to jointly analyze and interpret data products. From the start of 
the project, we regularly experimented with how best to bring research-
ers and practitioners together, and we engaged in multiple data analyses 
geared toward helping Summit practitioners improve learning opportuni-
ties for students. 

 Setting the Foundation 

 The process for identifying the first round of research questions that would 
guide the partnership began with an initial, face-to-face meeting of lead-
ers from Summit Public Schools and members of the research team. At the 
meeting, we engaged in a round of brainstorming activities where Summit 
leaders proposed topics and questions that the partnership could explore. 
Examples from this initial meeting included “identifying and measuring 
self-directed learning behaviors,” “identifying the relationships between 
micro-momentary choices that students were making and their college-
going trajectories,” and “identifying specific ways to keep students on-
track.” Following an initial round of brainstorming, the technology and 
information teams from Summit outlined the data that were captured 
and stored by their various systems. This first meeting concluded with a 
preliminary set of topics for the partnership to pursue and a developing 
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understanding of the data that could be used to explore each topic. Fol-
lowing the initial brainstorming meeting, the partnership blended Sum-
mit’s research interests with the knowledge and expertise of the research 
team using the following process: (1) members of the research team wrote 
brief descriptions for how they could attempt to answer each question 
that was developed during the initial brainstorming session; (2) practitio-
ners then reflected on the approaches proposed by the research team; and 
lastly, (3) the research team and Summit leaders came together to evaluate 
the potential impact and feasibility of answering each question. 

 The first question that the partnership collaborated on involved under-
standing patterns in students’ attempting and completing content assess-
ments. Summit’s 10-item content assessments are quizzes that students 
are required to complete at the end of each playlist. Different courses 
require different numbers of content assessments to be completed. A dis-
tinctive feature of playlists is that students are given both the freedom to 
work on whatever playlist they choose and discretion in how they navi-
gate each playlist. A core element of Summit’s learning model is that stu-
dents are provided with opportunities to grow and demonstrate “habits 
of success,” such as self-direction, curiosity, and civic identity. Using data 
from the 2013–14 academic school year from the LMS used by Summit 
at the time, we began exploring patterns of how students took and passed 
content assessments, not only to answer the focused research questions 
but also as a concrete way to measure students’ self-directed learning 
behaviors. Self-directed learning is closely related to self-regulated learn-
ing ( e.g.,   Pintrich, 2004 ), which refers to the ways learners actively regu-
late their own cognition, motivation, behaviors, and elements of their 
environment in order to achieve a goal. 

 The project officially kicked off in September 2014, and we completed 
our first joint data interpretation meeting at the end of October. The 
speed with which the research team was able to complete these first anal-
yses of students’ behavior in taking content assessments was important 
given the partnership’s goal of doing research differently and shorten-
ing the time between posing a research question and having a potential 
answer. What made exploring this question possible in such a short time 
frame was the fact that an entire prior academic year’s worth of data 
had already been collected and stored within Summit’s LMS and student 
information system. 

 To explore patterns in content assessment taking, the partnership used 
two initial strategies. First, we specified what content assessment taking 
should look like so that each student’s actual content assessment tak-
ing could be compared against that normative standard. Second, the dif-
ferent patterns found in students’ actual content assessment taking were 
examined in relation to outcomes that the partnership valued, such as 
course grades. For this first analysis, we examined student assessment 
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taking patterns in relation to students’ final grades in four core courses: 
Math, English, Science, and Humanities in ninth grade. For these four 
courses, we wrangled data from a database that tracked and stored stu-
dents’ content assessment taking in the LMS and from Summit’s student 
information system, which contained students’ course grades and stan-
dardized test performances. 

 We arrived at two major takeaways during an early fall meeting to 
review initial analyses. The first insight was based on the finding that 
the extent to which students struggled with content assessments varied 
for different assessments. One way in which we identified the degree to 
which students struggled was by examining students’ scores the first time 
they attempted a content assessment. For some content assessments, the 
median student scored 4 out of 10 on his or her first attempt, while for 
other content assessments, the median student scored a 7 or 8. This and 
related findings generated questions around what was contributing to 
low scores (e.g., content assessment difficulty, students’ prior knowledge 
related to the specific content being assessed, or the ways students pre-
pared for taking the content assessment). The implication from these 
analyses was that effort should be directed, both by Summit practitioners 
following the meeting and by the research team in the form of new analy-
ses, toward understanding factors contributing to students’ struggle with 
particular assessments. 

 The second key insight from this same early fall meeting was that teach-
ers should have easier access to cumulative and longitudinal data on stu-
dents’ attempts and completions of content assessments on the Summit 
platform. Up to this point in the history of the platform, teachers lacked 
basic information about what students were doing in the system. They 
could not answer questions such as “How many days were students tak-
ing to complete a playlist?” or “What resources were students using most 
often?” By aggregating a year’s worth of data and structuring a conver-
sation around how to interpret the data, the research team was able to 
demonstrate the potential benefit of providing longitudinal data directly 
to teachers through new data displays in the platform. 

 This initial cycle of inquiry would set expectations for the many 
partnership-driven analyses to follow. Direct engagement between 
researchers and practitioners helped improve researchers’ understand-
ing of the data they had analyzed and provided practitioners with an 
opportunity to see how learning at their school was playing out at scale 
and over time. Both kinds of insights helped the partnership brainstorm 
potential changes to the content assessments themselves and to how 
teachers worked with students to prepare for content assessments. 

 After this first cycle of inquiry, the research team added another data-
set into the mix—students’ use of the specific learning resources in their 
playlists. Using this additional dataset, the research team was able to 
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examine relationships among students’ standardized test performances, 
their use of playlist resources, and their content assessment taking and 
course grades. Perhaps unsurprisingly, an early finding was that students 
with lower incoming standardized test scores were attempting math con-
tent assessments more frequently. While lower incoming content knowl-
edge may explain the need for more attempts in order to demonstrate 
mastery on an assessment, we also observed that students with higher 
standardized test scores were using the system in different ways than 
their peers with lower incoming scores. For example, higher-scoring stu-
dents were using more unique learning resources and looking at those 
resources prior to taking a content assessment rather than afterward. 

 Building on Lessons Learned 

 The second deep-dive meeting between researchers and Summit leaders 
was held in winter of 2014 with the goal of discussing the analytic find-
ings regarding students’ learning resource use, content assessment taking, 
and course performance. This meeting prompted the partnership to think 
about how the findings could be communicated directly to Summit teach-
ers. Up to this point, the researchers had been working most directly with 
the CMO leaders, and the leaders took responsibility for communicating 
findings and negotiating potential changes with teachers. The partnership 
targeted an upcoming all-CMO professional development meeting as an 
opportunity for teachers to learn more about the data analysis findings 
and to interact directly with the visualizations and other data products 
that represented those findings. The partnership collectively developed 
a strategy for using findings from the fall and winter meetings to create 
datasets that could be integrated into Summit’s own data management and 
visualization tools. The hope was that by having the researchers take care 
of data wrangling and giving Summit teachers the opportunity to work 
with the organized datasets using tools they were already familiar with, a 
large number of teachers could engage with these data in an in-depth way. 
To help teachers navigate the new, unfamiliar data elements within their 
familiar systems, the research team briefly presented a description of the 
meaning of each data element and demonstrated how teachers could use 
a flowchart developed by the Summit information team. The flowchart 
was intended to help teachers identify whether or not a playlist was ripe 
for revision based on how many times students attempted its content 
assessment and the ways in which students used the playlist’s learning 
resources. 

 During the first year of the partnership, Summit practitioners and the 
research team engaged in three cycles of inquiry into Summit’s own data 
based on Summit’s research questions. Across multiple meetings, the 
partnership experimented with how to surface practitioners’ research 
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questions, how to present findings, and how to translate findings into 
follow-up actions. As the partnership moved into the second year, members 
made a concerted effort at a two-day meeting to reflect on and highlight 
lessons learned that would inform the second year of working together. 

 In reflecting on the first year, the partnership members affirmed the 
importance of having Summit lead the question-generation process and of 
having researchers support that process by reflecting on questions and the 
potential impacts and feasibility of addressing them. It was apparent that 
the speed with which researchers had answered the first question posed 
by Summit leaders helped build trust with Summit. Another key reflection 
was the way in which the partnership came to value and take seriously the 
fact that opportunities to meet and discuss data analyses were  learning 
events  as opposed to presentations where researchers would present and 
defend their analysis. Instead, meetings were structured as collaborative 
opportunities for researchers and practitioners to learn from one another. 
Concretely, researchers made intentional efforts to not just present find-
ings but to make as explicit as possible the thinking that went into each 
analysis. For example, we included data products that were built using 
sample or fake data to help practitioners understand the logic behind an 
analysis before presenting that product using their own data. Lastly, we 
organized a specific kind of learning event where researchers provided 
training to Summit’s information team on how to use the R software. 

 The second year of the project got under way with a return to the origi-
nal 10 research questions that were generated at the partnership’s initial 
brainstorming meeting. From the original list the partnership selected 
two questions to focus on: (1) How do Summit’s internal metrics relate to 
external benchmarks for college readiness? (2) Can we characterize what 
students do in the platform as successful or unsuccessful? To explore how 
Summit’s internal metrics related to external benchmarks, we analyzed 
relationships among students’ course grades and multiple standardized 
test scores, using data from multiple grade levels and subject areas. We 
then organized a broader meeting of teachers to explore the degree to 
which measures collected by Summit correlated with college-readiness 
indicators from external organizations. Across multiple meetings, we 
worked hard to help practitioners understand how to interpret specific 
relationships between internal and external metrics. Alex Bowers, who 
had recently done an in-depth analysis of the relationship between grades 
and standardized test scores, directly supported Summit staff during this 
period as they interpreted the developing findings. 

 Following these meetings, the researchers in the partnership conducted 
fewer analyses of the relationships between internal grades and exter-
nal test scores because Summit staff were easily managing and analyz-
ing these data. For these types of analyses, our roles shifted to helping 
interpret analyses that were initiated and carried out by Summit staff. 
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As researchers’ involvement in conducting these correlational analyses 
declined, we began work on the second research question concerning suc-
cessful and unsuccessful behavioral patterns within the Summit platform. 

 While data related to student outcomes, such as course grades and 
standardized test scores, had not required much, if any, feature engi-
neering, data from the platform did. Data from the platform contained 
millions of observations and required knowledge of learning theory as 
well as certain technical skills in order to turn those observations into 
meaningful features that could then be compared against student out-
comes. Over time, the pattern of researchers’ activity became clearer: 
When there was little need to engineer features, researchers supported 
school staff who conducted analyses themselves in thinking about how 
to interpret findings; when a lot of feature engineering was required, 
researchers did more of the analytic work as well as supporting data 
interpretation. 

 Characterizing successful and unsuccessful student behavior pat-
terns using platform data required significant feature engineering. Start-
ing with data from the then current school year, we used three general 
approaches to look for patterns. The first approach built off of our 
analyses the prior year and entailed simply summarizing how each stu-
dent used the platform in terms of the number of resources used, unique 
resources used, resources used before taking the first content assessment, 
number of content assessment attempts, and similar measures of the 
quantity of various types of activity. The second approach involved iden-
tifying strings of events. At a general level, each playlist comprises differ-
ent types of resources and assessments. We coded each digital learning 
event as either a resource (R) or as an assessment that was either passed 
(P) or failed (F). Thus, each playlist that a student worked on could be 
represented as a string of letters (e.g., RRFRRFP). When combined with 
the quantitative metrics (e.g., number of unique resources used on a 
playlist), the event strings characterized the many possible ways that stu-
dents used the learning platform. The third analytic approach we used 
involved quantitatively characterizing movements from one event to 
another. We created metrics, using conditional probabilities, that quanti-
fied how likely it is that a student would move from a certain kind of 
event to another kind of event. For example, if the student has failed a 
content assessment, how likely is it that the student will go immediately 
to another assessment and fail it? How likely is it that the student will 
go from the failed assessment to examining a learning resource? Across 
each pair of event categories, we identified students’ most likely transi-
tions, i.e., their most likely next step. 

 We presented these different ways of characterizing students’ patterns 
in a spring 2016 meeting with Summit leaders and teachers. Through-
out the summer of 2016, we used known grade and achievement score 
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outcomes from the 2015–16 school year, and worked to identify more 
and less successful learning behavior patterns. Naturally, “it depends” 
was a common phrase in our discussions. For example, students who 
came to a playlist with a high level of domain-relevant knowledge tended 
to use few resources and ultimately needed fewer attempts to pass the 
required content assessment. To the question “Should students be using 
more learning resources?”  It depends . Across multiple analyses, we devel-
oped evidence for a variety of patterns that members of the partnership 
took with them into the data sprint described in the opening of this chap-
ter. In bringing researchers and practitioners together for a concentrated 
amount of time to explore new questions, we attempted to set up specific 
tests of change that could be enacted following the sprint—thus moving 
the partnership toward a better understanding of more or less successful 
learning behaviors. 

 Carnegie Foundation for Advancement of Teaching 

 During the same summer that our partnership with Summit began, Andy 
and colleagues started working with researchers and staff at the Carnegie 
Foundation for the Advancement of Teaching. At the time, Carnegie was 
well into launching and supporting the Carnegie Math Pathways, which is 
a national effort focused on improving developmental, or remedial, math 
courses in 2- and 4-year colleges throughout the United States. In some 
colleges, students can be required to take a developmental mathematics 
course if they have been identified as not ready for college-level mathemat-
ics. These courses can be a significant barrier to college completion; only 
a small proportion of the students who are required to take these courses 
pass them and go on to earn the college-level math credits required for 
many degrees. One study of 57 community colleges found that 80 percent 
of the students assigned to a sequence of developmental math courses 
did not successfully complete a transfer-level (i.e., credit-bearing) math 
course within three years ( Bailey, Jeong, & Cho, 2010 ). The number of 
lives affected by the developmental math crisis in the United States is stag-
gering, so Carnegie brought together experts in mathematics education 
with college teams who all wanted to tackle this problem using a new and 
promising set of approaches referred to as improvement science. 

 With Carnegie as the hub, they formed a networked improvement com-
munity (NIC), which as introduced in the previous chapter is a type of 
scientific community that is organized around a common aim, guided by 
a common understanding of the problem it is trying to solve, disciplined 
by the use of improvement science tools, and deliberately structured to 
share knowledge across those participating in the network ( Bryk, Gomez, 
Grunow, & LeMahieu, 2015 ). Members of the Carnegie Math Pathways 
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NIC designed two different course sequences, or  pathways , represent-
ing alternative, intensified approaches to fulfilling developmental math 
requirements and earning college credit in either statistics or quantitative 
reasoning, referred to as Statway and Quantway, respectively. 

 From the beginning, the Carnegie Math Pathways NIC has been orga-
nized around the aim of increasing the percent of students—from 5 to 50—
who achieve college math credit within one year of continuous enroll-
ment as compared to other developmental math offerings. Multiple stud-
ies demonstrate how this aim has been met and exceeded by colleges 
participating in the Carnegie Math Pathways (e.g.,  Van Campen, Sow-
ers, & Strother, 2013 ;  Yamada, 2017 ;  Yamada, Bohannon, & Grunow, 
2016 ;  Yamada & Bryk, 2016 ). As the hub of the NIC, Carnegie worked 
with various researchers and practitioners to identify key drivers that were 
seen as necessary for achieving their aim (see  Bryk et al., 2015 , p. 75). 
Among these drivers, Carnegie singled out various “noncognitive” factors 
that have been shown to affect student success (see  Duckworth & Yeager, 
2015 ). These factors can include but are not limited to students’ beliefs 
about their ability to learn math, their sense of belonging in school, their 
perceptions of value for learning math, and the ways in which they set 
goals, monitor progress toward goals, and reflect on what worked and 
what did not (i.e., self-regulation skills [ Zimmerman, 2002 ]). These fac-
tors coalesced around the idea of improving students’ academic tenac-
ity and use of effective learning strategies, what would be referred to 
throughout the NIC as “productive persistence.” 

 A key instructional resource in both pathways was the use of online 
learning systems. From the partnership’s earliest conversations, Carnegie 
wanted to explore how the online learning systems were being used and 
the degree to which data from these systems could be used to measure 
and support students’ productive persistence in Pathways classrooms. 
Thus, the partnership with Carnegie was chartered as an opportunity to 
leverage data that was collected by the online learning systems, whereby 
Carnegie led the coordination with faculty teaching at 2- and 4-year col-
leges to interpret data products and co-develop change ideas. 

 Getting Up to Speed 

 In the summer of 2014, we began working with data from the 2013–14 
academic year. The partnership made the early decision to focus solely on 
analyzing data from Statway based on the ease of extracting data from 
the online system, which was built on the Online Learning Initiative (OLI) 
platform. The online system captured each page viewed, when it was 
viewed, each practice item that was attempted, when it was attempted, 
and whether an item was answered correctly or not. Along with page 
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views and practice items, the online system also captured time- and item-
level data from assessments, referred to as “Checkpoints.” Checkpoints 
come at the end of “topics” and “modules,” which organized Statway 
content into meaningful chunks. 

 For this year of Statway, there were approximately 1,600 students 
enrolled in over thirty 2- and 4-year colleges. Across reading, practice, 
and assessment activities, these students generated more than 7,300,000 
rows of data. Wrangling and exploring these data involved working 
closely with the technology team at Carnegie as well as multiple research-
ers who themselves had spent time wrangling and exploring multiple 
datasets prior to the start of the partnership. The partnership was able 
to jump into analyses quickly because of the prior work that had been 
done by Carnegie researchers. Similar to our later work with Summit, it 
became important to find ways of adding value as opposed to duplicating 
capability. As we moved into the fall of 2014, we identified several data 
wrangling opportunities that could open up new levels of analysis related 
to the online learning system data, such as units of time (e.g., sessions and 
days), learning activities, and curricular organizers (e.g., topics and units) 
that could be used to aggregate the events that students logged, whereby 
these different levels of analysis could open up new opportunities to mea-
sure students’ productive persistence behaviors. 

 In the fall of 2014, we started to explore variation in how the online 
system was used across individual Pathways courses. These analyses were 
intended to quantify the ways in which individual instructors were using 
the online system at the scale of the entire network. If valid and reliable 
metrics could be collected on how instructors were using the online system, 
these measures could be used to help Carnegie staff coach faculty around 
best practices, understand differences in course outcomes, and provide a 
measure of the course context on which to better understand students’ pro-
ductive persistence behaviors. For this initial analysis, we examined when 
students completed end-of-module Checkpoints. Using the dates that stu-
dents within a course completed an end-of-module Checkpoint, we created 
multiple visualizations that represented both within-course variation (i.e., 
how students within the same course are different from one another) as 
well as the between-course variation (i.e., how courses are different from 
one another). The partnership identified that courses where most students 
followed the intended order of modules had higher proportions of students 
earning a C or higher than courses where students did not use the online 
system at all or where students completed end-of-module Checkpoints fol-
lowing a variety of different orders.  Figure 6.1  demonstrates one way we 
visualized the dates on which students completed end-of-module Check-
points, denoted “CP” in the figure. Each Statway course section is a row, 
and each time a student submitted a Checkpoint for a given module is 
represented by a shape. The within- and between-course variation captured 
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in  Figure 6.1  provided a rationale for Carnegie researchers to reach out to 
faculty throughout the NIC to better understand how and why they were 
using the system in the ways they were. 

     We followed up on the course level of analyses by exploring students’ 
use of the online system by focusing on the “session” as the level of analy-
sis. A session was defined by the online environment as the time between 
logging into the system and logging out, or being timed out, of the sys-
tem. Just as we looked at within- and between-course patterns for these 
analyses, we explored within- and between-session patterns for students. 
In one analysis, we coded each session that a student engaged in as a 
string of events, which was similar to our approach with Summit’s play-
list events. For example, we coded page views, practice activities, and 
Checkpoints as V, P, and C, respectively. For example, a student could 
log the following strings for two separate sessions: “VVPVVPPC” and 
“CC.” In the first example, the student began the session with a page 
view, engaged in both page views and practice activities during the mid-
dle of the session, and ended the session with a Checkpoint. The second 
example illustrates a student logging two Checkpoint events in a row. 
This approach helped in seeing the different ways in which students used 
the system and in generating features that were used in various unsuper-
vised and supervised learning models. Features included distinctive types 
of sessions, such as assessment-only sessions (all “Cs”), as well as more 
robust sessions where students logged Vs, Ps, and Cs within the same ses-
sion. Along with these different types of sessions, we observed different 

Figure 6.1 Statway End-of-Module Completion
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within-session behaviors, such as the number of activities a student 
engaged in prior to taking a Checkpoint.  Krumm et al. (2016 ) describe 
how we later quantified these various within- and between-session fea-
tures and modeled them in relation to test and grade outcomes. These 
analyses, as we observed in  Chapter 3 , were inferential in nature, which 
helped in providing evidence for the importance of potentially interven-
ing on these behaviors over time. Armed with an understanding of how 
different Statway courses varied in their use of the online learning system 
and potential behavioral measures of productive persistence, the partner-
ship began a series of design workshops with faculty participating in the 
Carnegie Math Pathways NIC. 

 Design Workshops 

 Design workshops were geared toward providing faculty with an oppor-
tunity to share their knowledge and expertise in interpreting data prod-
ucts, shaping subsequent analyses, and co-developing interventions that 
they could later implement. In the fall of 2015, we held our first design 
workshop with faculty mentors, who are a group of faculty who provide 
support and training to instructors throughout the NIC. In working with 
faculty mentors, we maintained our emphasis on experimenting with how 
best to organize meetings between researchers and practitioners around 
data. The initial workshop was organized around faculty mentors gen-
erating prototype data visualizations that they could use as part of their 
day-to-day teaching. For the partnership, the goal was to take faculty men-
tors’ prototype ideas and translate them into visualizations that would 
later be deployed in the NIC’s LMS. 

 The workshop was anchored in a brief presentation on a handful of 
measures from students’ use of the system. The brief presentation was 
followed up with multiple individual and group prototyping activities. 
In collaboration with Carnegie researchers, we collected prototypes from 
each activity and later examined them in terms of common themes and 
the specific data elements they required in order to generate the visualiza-
tion. We presented data products on the importance of students regularly 
logging into the LMS; engaging in reading and practice activities; com-
pleting Checkpoints; and reading, practicing, and assessing within the 
same session. Key themes that emerged from faculty mentors’ prototypes 
were the need for more longitudinal representations of students’ activity 
in the system and better alignments between  what  students did in the 
LMS with  how well  students did on Checkpoints. After analyzing the 
prototypes that mentors developed, we observed that prototypes often 
required data elements and relationships among data elements for which 
there was limited evidentiary support—having evidence to support the 
importance of the underlying student behavior represented in a visualiza-
tion was a criterion that we set for the overall design process. Coming out 
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of the first design workshop were a series of prototyped visualizations 
and new topics and questions to explore. 

 Building off of the topics from the first workshop, we engaged in a 
focused set of analyses, which led to a new set of data products that 
we presented to faculty at a second workshop in the summer of 2016. 
For this second workshop, we reduced the prototyping elements and 
increased the number of faculty who participated. Data products at this 
second workshop addressed the order of students’ end-of-module Check-
point completions (i.e., similar to the fall 2014 analysis), students persist-
ing in the face of challenge (i.e., whether students return to a Checkpoint 
after a low score), the importance of engaging in reading as well as prac-
tice activities, and students completing both topic and end-of-module 
Checkpoints. As with the first workshop, prototyping activities surfaced 
multiple questions and follow-up topics. After the second workshop, we 
took stock of the evidence that was accruing around the importance of 
students attempting and persisting until successful on the Checkpoints 
within the first module and how this evidence also resonated with faculty. 

 Using the evidence related to completing Checkpoints, the partnership 
began two parallel tasks. First, we began preparing for a third design work-
shop where we focused on developing change ideas as opposed to proto-
typing data visualizations. Second, we started working with a large 2-year 
college in co-designing and testing strategies for helping students complete 
Checkpoints. Using analyses that had been presented at the second design 
workshop, Carnegie researchers co-designed three change ideas with par-
ticipating faculty. The goal of these change ideas was to get students to 
complete 100 percent of their Checkpoints, i.e., their “homework,” for 
the first two modules. Overall, we referred to this task as the “homework 
improvement sprint.” Participating faculty members were later randomly 
assigned to test one or more of the change ideas in their classrooms using 
a planned experimentation approach ( Moen, Nolen, & Provost, 2012 ). 
The co-developed changes included a work-block session prior to the start 
of face-to-face class (W), email reminders to students about completing 
their homework (E), and setting due dates within the LMS (D). Using data 
from the LMS, we detected positive effects for the percent of completed 
homework assignments as well as the timeliness of students’ completion. 
 Figure 6.2  illustrates the timeliness with which students completed each 
homework assignment (e.g., [1] CP 1.1.3). These boxplots illustrate how 
homework completion rates were more timely and less variable over time 
for faculty who tried out a change idea (i.e., faculty not marked “C” for 
control or “OTH” for other, non-participating faculty), and subsequent 
analysis revealed the overall benefit of the different work-block conditions 
( Meyer, Krumm, & Grunow, 2017 ). 

     Importantly, testing the previously mentioned co-developed change 
ideas was framed within the NIC and as part of the partnership as a learn-
ing opportunity, whereby evidence for the effectiveness of the individual 
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changes would need to be built over time as the change ideas were tried 
by more faculty and replicated under a variety of conditions. The abil-
ity to try out and learn from testing a change idea in multiple, diverse 
contexts is a core element of NICs in general and the Carnegie Math 
Pathways NIC in particular. Based on multiple measures generated from 
LMS data (e.g., the timing of submissions in  Figure 6.2 ), we developed a 
robust understanding of the many aspects of the changes faculty tested 
out, which helped in increasing confidence that the change ideas were 
promising despite the comparatively few faculty who participated. 

 Supporting Conditions for CDI 

 The two cases previously cited represent ways in which we have worked 
to take data-intensive research techniques to the frontlines of teaching 
and learning. Within each partnership, we tested particular ways of bring-
ing researchers and practitioners together. For example, in Summit, we 
regularly worked with Summit’s leadership teams and identified strategic 
opportunities to work with and learn from teachers. Similarly, in work-
ing with Carnegie, we regularly interacted with researchers and staff who 
supported the NIC and collectively identified the highest leverage ways 
of working directly with faculty and faculty mentors. Based on our expe-
riences across these two partnerships, there are three factors that make 
these partnerships distinct from more traditional ways in which research-
ers work with practitioners: (1) research questions and topics were based 

Figure 6.2 Homework Sprint Boxplots
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on the needs of practitioners, (2) the primary audience for data products 
was the partnership, and (3) researchers and practitioners co-developed 
change ideas. 

 Across Summit and Carnegie, the questions and topics that were explored 
by the partnership were based almost entirely on the needs of practitioners 
or those supporting practitioners. In the case of Summit, these questions 
came directly from Summit leaders. For Carnegie, initial questions were 
based on Carnegie’s interactions with faculty, and subsequent questions 
were generated at multiple design workshops. The primary audience for 
data products across both cases were members of the partnership who 
jointly interpreted data products, bringing with them their respective 
knowledge and expertise in identifying follow-on actions. Not only were 
researchers and practitioners jointly interpreting data products, they were 
also co-developing potential changes and testing them out in real learning 
environments. As we reflected on what was unique about these partner-
ships and in keeping with our design-based approach, we identified four 
 supporting conditions  that made each partnership successful. 

 In order for researchers and practitioners to come together to jointly 
develop data products and change ideas aimed at creating more effective 
learning environments, four conditions were in place: 

 1. The partnership between researchers and practitioners was based in 
 trust . 

 2. An  explicit improvement method  organized multiple elements of the 
partnership’s work. 

 3.  Learning events  provided opportunities for members of the partner-
ship to collaborate and build knowledge. 

 4.  Common workflows  and accompanying tools supported data-intensive 
research, improvement activities, and project coordination. 

 In describing these four conditions, we do not intend to portray them as 
exhaustive, and it is our hope that other partnerships will use them as 
well as refine them over time. At a practical level, these conditions, at the 
very least, are intended to give future partnerships a head start in launch-
ing their own work. 

 Trust 

 Across the partnerships with Summit and Carnegie, trust was a key 
component. Some may think trust has little to do with data-intensive 
research. However, if the goal is to improve educational outcomes, the 
role of trust between researchers and practitioners is hard to overstate 
( Penuel & Gallagher, 2017 ). Bryk and Schneider (2002) define trust as 
having one’s expectations validated in the actions of another. Trust is a 
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multi-dimensional construct based in respect, personal regard, com-
petence, and integrity. Exchanging data, developing data products, and 
testing out ideas all benefit when both researchers and practitioners trust 
one another in both word and action. 

 Respect is experienced in the ways individuals talk to and about one 
another; respect is also experienced as feeling heard by other members 
of the partnership. At the start of the Summit partnership, for example, 
respectful interactions were initiated early on by listening to and build-
ing off of practitioners’ questions. And across both Summit and Carn-
egie, respectful interactions also played a role during meetings where 
the partnership jointly interpreted data products. As researchers in these 
partnerships, we strove to create meetings—ultimately framed as learning 
events—where every interpretation was valued and could provide insight 
into understanding a data product. Acting with integrity, while a seemingly 
general phrase, manifested in both partnerships as adhering to promises 
and deadlines. Acting with integrity further involved adhering to specified 
procedures for working with data, as well as in keeping data analyses and 
change ideas focused on improving local learning environments. 

 Bryk and Schneider (2002) further acknowledge the importance of per-
sonal regard as a foundational component of trust. Concretely, one way 
in which we as researchers demonstrated personal regard involved going 
above and beyond in our roles as researchers; we regularly participated 
in last-minute presentations and conducted analyses that were not a part 
of either partnership’s formal question development processes. While per-
sonal regard can be seen as another person going out of his or her way to 
help another, competence is about fulfilling one’s role within the partner-
ship. For practitioners, competence can entail understanding and describ-
ing the various learning environments that the partnership will work to 
improve as well as accessing and sharing relevant data. For researchers, 
competence means being able to carry out multiple data analysis tasks 
as well as being able to organize meetings and events where members of 
the partnership work to jointly make sense of data products. Key com-
petencies across the two partnerships described previously were data 
wrangling and feature engineering, which helped each partnership merge 
datasets and surface new patterns and insights within their data. 

 In many ways, “collaboration” and “partnership” are empty words until 
both researchers and practitioners begin validating their words through 
action. Importantly, trust is a two-way street: Practitioners need to demon-
strate their commitment to a partnership through both time and engage-
ment; researchers need to similarly demonstrate their commitment by 
adjusting their time and schedules to better align with practitioners’. For 
example, at the start of the partnership, Summit highly valued working 
at a faster pace than that of typical research projects, and we as research-
ers demonstrated our ability to work at this pace. Lastly, as we observed 
throughout multiple meetings, trust can play an important role in jointly 
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interpreting data products and co-developing change ideas. Trust can 
help mediate potentially unflatteringly outcomes that are brought to light 
through an analysis and trust can provide a sense of safety in brainstorm-
ing potential implications from an analysis. 

 Explicit Improvement Method 

 As partnerships get started and begin to organize their work together, 
it can be useful to have a set of steps to follow and tools to use. Based 
on our work with Carnegie, we learned firsthand the important ways in 
which improvement science techniques can help in organizing partner-
ship activities. In particular, strategies for understanding the problem that 
a partnership will work on as well as developing a theory for how to solve 
the problem are key steps in almost any improvement project. Across our 
work with both Summit and Carnegie, tools such as a causal systems 
analyses and driver diagrams (see  Chapter 7 ) have all helped in shaping 
data-intensive analyses and co-design work. Following the development 
of change ideas, explicit improvement methods can be helpful in setting 
up iterative tests of change. 

 While there are many improvement methods to choose from, we have 
regularly made use of the  Model for Improvement  outlined by the Associ-
ates in Process Improvement, the Institute for Healthcare Improvement 
(see  Langley et al., 2009 ), and the Carnegie Foundation for the Advance-
ment of Teaching ( Bryk et al., 2015 ). We have also used tools from the 
 clinical microsystems  approach developed at Dartmouth College (see 
 Nelson, Batalden, & Godfrey, 2007 ). Based on our experiences, improve-
ment science techniques play critical roles in shaping what happens before 
as well as after a data-intensive analysis. For example, in our work with 
both Summit and Carnegie, we used driver diagrams as a way of identify-
ing key behaviors and outcomes to measure using data from digital learn-
ing environments (see  Krumm et al., 2016 ). While improvement methods 
can help to shape data-intensive analyses, they are also useful in provid-
ing approaches for testing potential changes. Improvement routines, such 
as a Plan-Do-Study-Act (PDSA) cycle, help clarify hypotheses related to 
an intervention, measurement opportunities, and approaches for making 
sense of the test. In our work with Carnegie, both PDSA cycles and the 
planned experimentation methodology ( Moen et al., 2012 ) were used to 
test change ideas (see  Meyer et al., 2017 ). These approaches provided a 
common set of tools that members of the partnership could use in carry-
ing out and learning from each test. 

 Learning Events 

 A recurring finding from the literature on instructional improvement is 
that most complex interventions require practitioners to develop new 
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skills and abilities ( Cobb & Jackson, 2012 ). Achieving many of the goals 
that we set out for each partnership required both researchers and prac-
titioners to develop new skills and abilities. The primary location for 
this learning occurred in meetings where members of each partnership 
jointly interpreted data products, co-developed change ideas, or explicitly 
learned from one another in a more formal setting. At a general level, 
learning events were structured activities where members of a partnership 
could develop new understandings by engaging in joint work. 

 Not every meeting, however, involved collaboratively developing change 
ideas. For example, with Summit, we organized a formal workshop where 
we provided direct support on using the statistical software R. Even during 
meetings where most, if not all, of the meeting was dominated by research-
ers presenting analyses to partners, very early on we came to view these not 
as simple information transfers from one group to another but as opportu-
nities to demonstrate to partners the ways in which we approached prob-
lems and thought about data. In our work with Summit, this most clearly 
manifested in a practice where we as researchers would create data prod-
ucts based on mocked-up data to first demonstrate the intuition behind an 
analysis. 

 Across both Summit and Carnegie, a key feature of the ways in which 
we worked with partnership members as well as teachers and faculty, 
respectively, was continuously playing around with the genre of what 
it meant to meet and learn from one another. With Summit, the clearest 
case of this was during the data sprint, whereby in an intensive two-day 
event our goal was to shorten the time as much as possible from when 
data were analyzed to the development of explicit change ideas. With 
Carnegie, we experimented with different approaches for working with 
faculty and faculty mentors through design workshops. Each one of these 
latter events had a clear instructional goal and was organized accordingly. 

 Common Workflows 

 A key component of data-intensive research involves analyzing, interpret-
ing, and deriving implications from complex datasets. For these activities 
to take place, partnering organizations need to exchange data. In our 
partnerships with both Summit and Carnegie, we adopted a similar set 
of tools and routines for working with data from online learning and 
administrative data systems. First, data were queried from a database and 
uploaded to a password-protected, auditable, and role-based file trans-
fer system. This system served as the central repository for raw data. 
Researchers were granted access to particular files; downloaded those 
files to password-protected and encrypted local computers; and engaged 
in data analysis using scriptable data analysis software. Eventually, both 
partnerships adopted the open-source language R and standardized many 
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elements of the workflow using the same R packages. Data cleaning, 
wrangling, and analysis scripts were shared across researchers and prac-
titioners, which created the opportunity for more reproducible analyses. 
Importantly, as both partnerships progressed, the added benefit of script-
ing every step in an analysis was that it created opportunities for prac-
titioners to learn from worked examples and further develop their own 
data-intensive research skills (Gee, 2010). 

 Another key workflow across both partnerships involved sharing and 
storing data products. We experimented with collaborative file sharing 
services like Google Drive and Dropbox and learned over time the impor-
tance of having an intentional system in place for curating data products. 
In both partnerships, we produced hundreds of separate analyses—each 
with takeaways that informed a future action to varying degrees. Being 
able to revisit past work helped make partnership meetings more effi-
cient. As we actively worked to develop better knowledge management 
approaches, we used improvement methods on ourselves and our own 
workflows. For example, our aim was to script 100 percent of a work-
flow and to be able to trace 100 percent of data products to a driving 
question. Opening up data transfer, sharing, and analysis to the tools and 
routines of improvement science helped us identify key opportunities for 
improvement and make data-intensive research activities more efficient 
and effective. 

 Conclusion 

 In this chapter, we described two cases of CDI and outlined four condi-
tions that we viewed as helping to sustain each partnership over time 
and ultimately turn raw data from digital learning environments into 
new insights and change ideas. At the outset, we oriented CDI within the 
broader traditions of data-driven decision making, educational data min-
ing, and learning analytics. At the intersection of these multiple traditions, 
we saw clear gaps in that few partnerships existed around using data 
from digital learning environments and few provided detailed depictions 
of how to engage in collaborative data-intensive research regardless of 
the data source. We follow elements of the cases described in this chapter 
into our discussion for the ways in which CDI projects can be organized 
and executed across five phases in the next chapter. 
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 In  Chapter 6 , we described two cases for how researchers and practitio-
ners can come together to collaboratively analyze and take productive 
action using data from digital learning environments and administrative 
data systems. When we launched the partnerships with Summit and Carn-
egie, we sought to develop a process that other research groups could 
adopt and follow. Our reasoning at the time was simple: We wanted a 
clear process to help guide our work, there were few examples to be 
found, so we set out to develop our own over time. Building off of the 
supporting conditions described in  Chapter 6 , this chapter describes the 
outcomes of those efforts and outlines a five-phase approach for organiz-
ing a collaborative data-intensive improvement (CDI) project.  Figure 7.1  
illustrates each phase and the key activities within each phase. The logic 
behind each is as follows. Phase I involves setting up a partnership, from 
identifying key members to jointly defining the aim of the partnership. 
Phase II entails developing an overarching theory for how the partnership 
will reach its aim. Phase III is where the data-intensive research work-
flow introduced earlier fits within a CDI project—the aims and theory 
from Phases I and II shape data wrangling, exploration, and modeling. 
Phase IV is where insights from data-intensive analyses get translated 
into change ideas through iterative, collaborative design. Lastly, Phase V 
is where members of a partnership test out change ideas in real learn-
ing environments and improve upon the change ideas over time. In the 
remaining parts of this chapter, we describe each of these phases in further 
detail and follow our hypothetical high school introduced in  Chapter 3  
across steps and phases. 

     Phase I 

 Organizing a partnership for success involves identifying project team 
members, clarifying problems the partnership is trying to solve, and 
specifying aims for the partnership. Research–practice partnerships are 
best formed around pressing needs and challenges experienced by prac-
titioners ( Coburn, Penuel, & Geil, 2013 ). Oftentimes, partnerships begin 
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around issues that engender emotional responses due to unsatisfactory 
conditions or outcomes (Gomez, 2016). Going from a general sense of 
a need to a well-specified aim that the partnership will collectively work 
toward is the purpose of Phase I. Unlike a broad issue that animates 
people to act but does not set a direction, an  aim  is a quantifiable focus 
for improvement that sets the overall direction for a project ( Langley et 
al., 2009 ). Before setting an aim, however, a partnership often needs to 
develop an understanding of the problem it is going to address. Focus-
ing on problems at the outset of a partnership and collectively working 
to best understand the conditions leading to the problem can help in 
avoiding the familiar tendency of creating solutions first and searching 
for problems second ( Bryk, Gomez, Grunow, & LeMahieu, 2015 ). In the 
following sections, we describe three key steps involved in Phase I. 

 Identify Project Team Members 

 For a CDI project, there are often multiple roles that need to be filled and 
key organizational members that need to be coordinated with: champi-
ons, practitioners, data stewards, researchers, organizational leaders, and 
stakeholders. A key lesson from research on instructional improvement 
more generally is that it often takes the collective action of multiple 
individuals working in a coordinated way to effect change in learning 
environments (e.g.,  Cohen, Peurach, Glazer, Gates, & Goldin, 2014 ). A 
key role to identity within each partnering organization is a  champion , 

Figure 7.1 Five Phases of a CDI Project
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who is the primary point of contact for big decisions, helps to ensure 
that tasks are completed on time, and keeps members of the partnership 
focused on key activities. Importantly, champions encourage members of 
the partnership to regularly update their assumptions about the project’s 
direction and the degree to which trust is being built and sustained ( Spur-
lock & Teske, 2015 ). In addition to champions, a partnership depends 
upon a core set of individuals who regularly attend meetings across each 
phase of the work and engage in specific project activities. Continuity 
is key, and we have observed that partnerships, especially at the outset, 
benefit from a consistent group of  practitioners  and  researchers . Practitio-
ners are individuals who work directly with learners (e.g., teachers) or are 
those who directly support other practitioners in working with learners 
(e.g., building-level leaders or central office staff who work directly with 
teachers). Figuring out which practitioners will attend regular meetings is 
not a trivial task; throughout a project, practitioners who can regularly 
attend partnership meetings can become the  de facto  voice for multiple 
constituencies. 

 In our partnership work, we typically take on the  researcher  role. As we 
have noted previously, a researcher brings to a partnership multiple skills 
in preparing for and conducting data-intensive analyses along with devel-
oping and testing change ideas that are informed by an analysis. Early on 
in a partnership, it can be useful to think of a researcher as someone who 
devotes his or her data analysis work to data wrangling and exploration. 
As we observed in both of our partnerships with Summit and Carnegie, 
there can be tremendous value in merging once-disparate data sources. 
Wrangling and exploring takes on further value as insights from theory 
and practice are brought together in Phase II of a CDI project and in fea-
ture engineering and predictive modeling in Phase III. 

 A  data steward  is a key role within an educational organization because 
of his or her access to data, such as databases for digital learning environ-
ments or administrative data systems. A data steward helps the partner-
ship understand what data are available and provides the partnership with 
updates of data as the project progresses. Data stewards can also play a 
role in negotiating access to data that are collected and stored by digital 
learning environments but not directly held by the educational organiza-
tion. In some partnerships, the data steward might regularly attend proj-
ect meetings; in others, the data steward supports the project only when 
technical expertise is needed. Regardless of the intensity of participation, 
a data steward should help to ensure the secure transfer of data between 
organizations, such as between a school and a research organization, and 
can be a valuable resource in understanding the history of data systems as 
well as data quality issues that are present in almost every system. 

 Along with identifying champions and core team members, we have 
found that it is important to identify and coordinate with  organizational 
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leaders  at both the site (e.g., principals) and district levels (e.g., central 
office staff or assistant superintendents). Organizational leaders can be 
crucial gatekeepers to resources and can play a supporting role in imple-
menting as well as scaling change ideas. In addition,  stakeholders  can 
be important team members as they are most affected by the actions of 
the partnership. Stakeholders in educational organizations can include 
students and parents, and depending upon the purpose of the project, 
they can be regular or intermittent partners. One way in which we have 
interacted with students in a CDI project is through interviews and focus 
groups. Research–practice partnership models described by  McLaughlin 
and O’Brien-Strain (2008 ), for example, outline additional ways in which 
parents and community members can be brought into a partnership to 
provide their perspectives on learners, problems to be solved, and oppor-
tunities to improve. 

 Clarify the Problems the Partnership Is Trying to Solve 

 As multiple improvement science researchers and practitioners note, proj-
ects should be based on a partnership’s understanding of the problem 
facing practitioners ( Nelson, Batalden, & Godfrey, 2007 ). Clarifying the 
problems that the partnership is working to solve entails moving from the 
issues that initially brought potential partners together to discussions on 
specific processes, norms, and structures that may be contributing to the 
problem. There are several activities that we have drawn on in helping 
us to clarify problems with our partners, and one of the most useful has 
been a  fishbone diagram , which is also called a root cause analysis, causal 
systems analysis, or Ishikawa diagram. A fishbone diagram places a prob-
lem to be addressed at the “head” of the diagram (see  Figure 7.2 ). Above 
and below the line originating from the head, broad categories of fac-
tors contributing to the problem are placed. Example factors can include 
people, processes, materials, and norms; they are intended to be general, 
with increasingly more specific elements of each factor placed under-
neath. Connecting categories to the “spine” are perpendicular “ribs” that 
provide a space for capturing more specific causes. Ribs can continue to 
branch out in a perpendicular fashion as deeper factors are identified. 

  Figure 7.2  represents a fishbone diagram for our hypothetical high 
school introduced in  Chapter 3 . Recall that the problem practitioners 
were working to better understand were the large number of students 
who earned a C− or lower in the first year of the course. Practitioners 
brainstormed four initial categories: (1) students’ study habits and strate-
gies, (2) course design, (3) access to resources, and (4) schedule. Within 
these broad categories, members of the partnership identified the negative 
effects of students starting off track or falling behind. One potential rea-
son for falling behind was that students did not know how to effectively 
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use their study time in and out of school. Multiple topics such as knowing 
course expectations for a dual-enrollment course, navigating the modules 
within the learning management system (LMS), and the overall quality of 
the modules themselves surfaced as broad categories of potential causes 
for high numbers of students earning a C− or lower in the course. Map-
ping potential causes helped the partnership clarify which factors they 
wanted to prioritize in their improvement work. As we demonstrated in 
 Chapter 3 , this problem clarification work can help in providing specific 
questions to explore using data-intensive research techniques. 

 While there are no guarantees that engaging in causal systems analy-
sis and completing a fishbone diagram will surface the right problem 
and the right causes, the simple act of having partners think deeply and 
explore multiple facets of a problem can help set a partnership on the 
right track. Another added benefit of engaging in a causal systems analy-
sis is captured in the word “systems.” Moving away from simple solu-
tions and appreciating the ways in which undesirable situations are a 
function of multiple, interrelated factors can both reveal the true com-
plexity of a problem as well as help a partnership prioritize factors to 
begin working on. 

 Specify Aims of the Partnership 

 Setting concrete aims is an initial set of activities where practitioners 
and researchers can come together to begin integrating their respective 

Figure 7.2 Fishbone Diagram
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knowledge, skills, and experiences ( Coburn et al., 2013 ). As the partner-
ship identifies members’ roles and develops a better understanding of 
the problems it is trying to solve, an aim statement can become a useful 
resource in organizing the next steps for the collaboration. A quality aim 
statement answers the question “What are we trying to accomplish as a 
partnership?” Being clear on what the partnership is trying to accomplish 
can help in identifying what a partnership might need to do differently 
in order to achieve its aim. Said differently, a clear aim can put a partner-
ship in a position to develop a plan necessary for achieving its aim. The 
causal systems analysis done earlier can be useful in this task: Problems or 
undesirable circumstances anchor causal system analyses; aims are often 
positive versions of a problem with targeted benchmarks and timelines. 

 A quality aim statement specifies what a partnership is working toward, 
the degree of improvement sought, and a timeline by which the aim will be 
accomplished. While there are various models for aims, such as SMART 
goals (specific, measurable, achievable, realistic, and time bound), we have 
found that answers to the simple question “what, by when?” are often 
sufficient in specifying an aim. Importantly, an aim statement should natu-
rally flow from the causal systems analysis done previously, and the part-
nership, as a whole, should work to develop consensus around the aim 
statement.  Bryk et al. (2015 ) discuss the benefits of multiple versions of 
a similar aim: an aspirational version and a technical version. An aspira-
tional aim addresses the broader problem that a partnership is working 
on, which can provide a direction to a partnership, help in motivating 
members of a partnership, and serve as a reminder that a partnership is 
working on important problems. While aspirational aims help in moti-
vating individuals, technical aims help a partnership measure progress 
toward a specific future state. 

 For example, in our hypothetical case high school, the aspirational aim 
focused on “100% of students, 100% of credit.” The technical version 
answered the “what, by when?” question over a two-year period and 
acknowledged the full complexity of the problem that surfaced during 
the causal system analysis and available resources: “At the end of the 
2019–20 school year, 95% of students who enroll in the dual-enrollment 
math course will earn a C or higher.” 

 Phase II 

 Understanding the best way to achieve a partnership’s aim involves col-
lecting primary data from practitioners’ context, scanning pre-existing 
research, and co-developing a practical theory that will guide improve-
ment work. As partnerships discuss issues, problems, and goals, multi-
ple perspectives will emerge. Often, these perspectives are informed by 
the knowledge and information that individuals contributed to Phase I 
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activities. The purpose of Phase II is to expand upon these perspectives by 
collecting new information grounded in both practice and research. The 
location for bringing these multiple sources of information together is a 
 practical improvement theory , described in a later section, which can help 
in shaping subsequent data-intensive analyses as well as co-development 
work around potential change ideas for practitioners to test in their class-
rooms. Next, we describe three key steps involved in Phase II. 

 Collect Primary Data From Practitioners’ Context 

 Collecting data from practitioners’ context provides an opportunity for 
a partnership to learn about what is happening in real learning environ-
ments. Going into Phase II, a partnership has identified a key problem 
of practice, made conjectures regarding the factors contributing to the 
problem, and clarified an aim worth pursuing. Collecting data from prac-
titioners’ context can help to confirm or disconfirm factors thought to 
contribute to a problem. Furthermore, collecting data from practitioners 
can help in developing an understanding of the key processes that make 
up teaching and learning. Collecting data from learning environments 
is particularly important for making sense of data from digital learning 
environments. It is easy to draw the wrong conclusions from data without 
an understanding of the broader instructional activities that may have 
contributed to what students were doing and why they were doing it (e.g., 
 Murphy et al., 2014 ). 

 In many ways, collecting data from practitioners’ context is about 
cataloguing and understanding how particular processes play out in an 
environment. A process is “a series of related work activities that together 
transform  inputs  into  outputs  for the benefit of someone” ( Nelson et al., 
2007 , p. 299). Within complex systems, such as schools, there are mul-
tiple processes that build on one another in intricate and often opaque 
ways. To help make processes less opaque, partners can engage in  pro-
cess mapping  as a structured way of articulating key steps and decisions 
that make up the process. Process mapping is “a method for creating a 
diagram that uses graphic symbols to show the steps and the flow of a 
process” ( Nelson et al., 2007 , p. 299). A central tenet of improvement sci-
ence is that improved outcomes come only through improved processes. 
Making a process explicit can help in identifying where key processes 
break down, are wasteful, or are needlessly complex. 

 Process mapping typically begins by gathering information from prac-
titioners through surveys, interviews, or observations with the goal of 
understanding how a process unfolds. This can also be accomplished by 
gathering a group of practitioners to discuss the sequence of steps and 
decisions involved in an activity or task. Within a partnership, process 
mapping can entail collaboratively constructing flowcharts by identifying 



142 Five Phases of CDI

Figure 7.3 Process Map

steps, drawing boxes around each step, and connecting boxes using 
arrows. If a step in a process represents a decision, this decision point 
is signified with a diamond shape. The beginning and end of a map is 
signified with an oval. Using these basic building blocks, a process map 
highlights how well a group actually understands a process—steps that 
are not understood well are an invitation to learn more. 

 The simplified process map represented in  Figure 7.3  demonstrates 
how teachers at the case high school worked to understand the ways in 
which they made students aware of “course expectations,” which was 
an idea that surfaced during the development of the fishbone diagram 
(see  Figure 7.2 ). The thinking behind the issue involved the degree to 
which all students knew about the required summative assessments and 
the importance of the assessments toward their grades. In mapping how 
teachers introduced course expectations on the first day and launched 
work on Module 1, they recognized that they discuss the grade policy 
and the syllabus but that they don’t introduce the LMS and where the 
summative assessments are located in the LMS prior to starting work on 
course material. 

     Conduct Rapid Literature Scan 

 A rapid literature scan is a focused way of helping a partnership learn 
about the problem it is trying to solve based on the findings and experi-
ences of other researchers. Moreover, a rapid literature scan can help 
clarify what data to attend to and analyze as well as potential change ideas 
to test in Phase V. As  Park and Takahashi (2013 ) outline, rapid literature 
scans can be pragmatic dives into the pre-existing literature to advance 
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the learning of a partnership on a specific topic. A specific purpose or 
topic anchors a literature scan. After identifying a topic, a scan should 
be bounded by a timeline, such as 90 days, to help discipline the over-
all process. Along with timelines, it can be important to have a specific 
objective for what will be delivered at the end of the scan (e.g., a frame-
work, annotated bibliography, sample measures, change ideas). An expe-
dient way to begin a scan is by interviewing recognized experts;  Park and 
Takahashi (2013 ) recommend that rapid literature scans strike a balance 
between interviews and readings. Further, they recommend a set of activi-
ties for the first 30 days, for example, of a 90-day scan. The first 30 days 
should focus on  scanning , which involves conducting initial interviews 
and article identification as well as adjusting, if necessary, the proposed 
deliverable. The second 30 days involve getting feedback on what was 
produced during the first 30 days and continuing to make progress on the 
proposed deliverable as more is learned. The final 30 days involve getting 
additional feedback and finalizing the end product for the full partner-
ship’s review and critique. 

 In our work with Summit, described in  Chapter 6 , we engaged in a rapid 
literature scan to better understand research on students’ self-directed 
learning behaviors. We consulted prior research to identify candidate 
measures of self-directed learning (e.g., persistence and wheel-spinning) 
as well as potential change ideas (e.g., messages sent directly to students 
through the Summit Learning Platform). Similarly, in our work with the 
Carnegie Math Pathways, we engaged in a rapid literature review for 
the purpose of developing practical measures of productive persistence 
( Krumm et al., 2016 a). We used the assessment framework known as Evi-
dence Centered Design to identify potential constructs, meaningful tasks 
from which those constructs could be measured, and the potential evi-
dence that could be gathered from the digital learning environment used 
as part of the Carnegie Math Pathways ( Mislevy, Steinberg, & Almond, 
2003 ;  Mislevy, Behrens, DiCerbo, & Levy, 2012 ). Our own rapid litera-
ture review, along with prior work done by researchers at the Carnegie 
Foundation, helped the partnership select what data to analyze and how 
to initially set up feature engineering tasks. 

 Co-Develop a Practical Improvement Theory 

 A practical improvement theory is a visual representation of a partner-
ship’s approach to achieving an aim.  Yeager, Bryk, Muhuch, Hausman, 
and Morales (2013 ) define a practical improvement theory as an “easily 
interpretable conceptual framework of the system that affects student 
outcomes, that practitioners view as useful in guiding their work, and 
that remains anchored in the best available empirical research” (p. 19). 
One goal of a practical improvement theory is to motivate and guide 
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improvement work. It is  practical  because it should be used to guide local 
action—as opposed to supporting broader and more generalizable theory 
building—and because it is tentative and open to revision. As will be 
described later, evidence collected from practice, data-intensive work, and 
tests of change ideas can all be used to revise an improvement theory and 
a partnership’s overall understanding for how to achieve a partnership-
defined aim. 

 A popular approach for graphically displaying an improvement theory 
is in the form of a driver diagram, which comprises an aim, primary 
drivers, secondary drivers, and change ideas. In general terms, a driver 
diagram “consists of a team’s shared theory of knowledge—which is 
developed by consensus—and includes relevant beliefs of team members 
about what must change and which ideas about how to change may 
result in improved outcomes” ( Bennett & Provost, 2015 , p. 39). As a 
visual tool, a driver diagram illustrates key elements of a system that need 
to be changed in order to achieve an aim. These key elements are aligned 
to specific change ideas; this alignment entails an explicit hypothesis: “If 
we make this change, it will affect this driver (i.e., primary or secondary), 
and if this driver improves, we will make progress toward our aim.” 

 An important first step in developing a driver diagram is revisiting the 
aim statement developed during Phase I. From this aim, team members 
identify three to five necessary conditions, or primary drivers. These pri-
mary drivers are informed by the causal system analysis conducted in 
Phase I and the primary data collection and rapid literature scans carried 
out earlier as part of Phase II. Secondary drivers provide more detail 
around what, where, and when a primary driver will be improved upon; 
they provide a degree of specificity for targeting a primary driver through 
a specific change idea. Identifying secondary drivers, therefore, involves 
working backward from a primary driver to specify where and when a 
primary driver can be acted upon. 

  Figure 7.4  presents a driver diagram for the high school we have been 
following in this chapter. The aim for the diagram is based on the more 
technical aim that was specified in Phase I. Using what was learned dur-
ing Phases 1 and II, the following primary drivers were selected:  Students 
start and stay on track ,  Students interact with peers and teachers outside 
of class , and  Students interact with quality resources within Modules . 
These drivers where identified as necessary for achieving the aim of having 
95 percent of students earn a C or higher. While primary drivers specify 
what a partnership believes is necessary for achieving an aim, secondary 
drivers identify more specific points of intervention related to a primary 
driver. For example,  Students are made aware of course expectations,  is a 
concrete point of intervention, and as a partnership further builds out its 
driver diagram, it can attach specific change ideas to secondary drivers. 
In the case of making students aware of course expectations, a specific 
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change idea entailed developing and using a checklist to help ensure that 
instructors introduced specific elements of the LMS before working on 
course material. 

     Phase III 

 Phase III involves preparing for data-intensive analyses; wrangling, explor-
ing, and modeling available data; and jointly interpreting data products. 
Phase III of a CDI project is nothing more than the data-intensive research 
workflow introduced in earlier chapters. In  Chapter 2 , we introduced the 
overall workflow and how the steps worked in concert with one another. 
In  Chapter 3 , we introduced specific tools and examples for the wrangle, 
explore, and model steps. In this section, we describe how the workflow 
fits within a CDI project. 

 Within a CDI project, the purpose of data-intensive analyses is to 
develop and communicate  practical  data products that help a partnership 
develop a better understanding of the local education system, identify pre-
dictive relationships, and assess changes ( Solberg, Mosser, & McDonald, 
1997 ;  Yeager et al., 2013 ). In  developing a better understanding of a local 
system , practical data products can help a partnership appreciate previ-
ously unknown relationships between processes and outcomes. Based in 
the example of the hypothetical high school, visualizing when students 
first passed the summative assessment, especially as compared against the 
grades students earned, was useful in demonstrating previously unknown 
relationships. Both inferential and predictive modeling helped in  estab-
lishing predictive links  between the dates students first passed summative 
assessments and their eventual grades. Formal predictive modeling led 

Figure 7.4 Driver Diagram
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to a model based in when students completed the second module (i.e., 
 mod_2 ). Subsequent change ideas directed at improving when students 
complete certain modules used the day of the school year that modules 
were completed to  assess the effectiveness  of those change ideas. Our 
description of the “homework improvement sprint” conducted with the 
Carnegie Math Pathways from  Chapter 6  offers yet another set of exam-
ples for the ways in which data-intensive analyses within a CDI project 
can be used to learn, predict, and assess changes. 

 Prepare for Data-Intensive Analyses 

 Preparing for an analysis, as we described in  Chapter 2 , involves devel-
oping a research question as well as getting to know the data that will be 
used in subsequent analyses. Within a CDI project, developing a research 
question involves referring back to the various products that have been 
developed, such as fishbone diagrams, process maps, and driver dia-
grams. These products can provide direction on topics to explore, and 
in some cases, what data to attend to and how they might be analyzed. 
A driving research question can help in providing direction to a data 
analysis, which can reduce the likelihood of aimless data exploration. 
The second set of activities that can help in preparing for a data analysis 
involves getting to know a technology, how a technology is used, and 
the ways a technology collects and stores data. Getting to know a tech-
nology involves, in the case of a digital learning environment, logging 
into the system and exploring the various tasks and activities. It also 
involves seeing how, again in the case of a digital learning environment, 
students in classrooms are expected to use it as well as actually use it. 
And learning about how a technology collects and stores data entails 
comparing one’s observations from interacting with the technology and 
seeing how it is used in classrooms with data dictionaries or sample 
database queries. 

 Wrangle, Explore, and Model 

  Chapters 2  and  3  covered the topics of exploring, wrangling, and model-
ing data and the cases outlined in  Chapter 6 , in particular, highlighted the 
overall importance of data wrangling and exploration to a CDI project. 
As we illustrated in  Figure 2.3  in  Chapter 2 , many of the steps involved 
in analyzing data are overlapping and the same analytical technique can 
serve multiple purposes (e.g., one can use inferential and predictive mod-
els to explore one’s data). These three steps can consume a dispropor-
tionate amount of time and energy in a CDI project. We use the term 
“disproportionate” intentionally in that data-intensive analyses are a 
set of steps within a broader set of phases that, combined, can support 
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positive changes in learning environments. A critical element to carrying 
out these steps is having a common workflow based in common tools 
and software—especially as partnerships move more and more into col-
laboratively engaging in data analyses where practitioners adopt the roles 
and routines of data scientists and researchers. Over time we have con-
solidated our tools to include the open source language R and several R 
packages referred to as the “tidyverse.” R and related packages offer free 
and flexible ways of approaching each step in the data analysis process 
as well as tools for sharing and communicating data products, such as 
Markdown files and Shiny applications, both of which can be used in 
a meeting where researchers and practitioners come together to jointly 
interpret data products and brainstorm change ideas. 

 Jointly Interpret Data Products and Brainstorm 
Change Ideas 

 After data products have been developed that address a driving question, 
it can be useful to convene members of the partnership to interpret data 
products. By “interpret” we mean noticing elements within a data prod-
uct and connecting them to one’s prior knowledge ( Weick, 1995 ). Inter-
preting a data product involves answering the question: “What does this 
mean?” The different experiences and prior knowledge of researchers and 
practitioners can shape what they notice in a data product as well as the 
connections they make, and ultimately the meaning they make of it. The 
meaning one makes of a data product can, in turn, shape the implications 
one derives and ultimately the actions one takes ( Coburn & Turner, 2011 ). 

 In setting up a meeting where researchers and practitioners jointly inter-
pret data products, it is beneficial to revisit the various individuals iden-
tified in Phase I: champions, practitioners, data stewards, researchers, 
organizational leaders, and stakeholders. Identifying who should join in the 
process of interpreting data products is consequential, as individuals bring 
with them different knowledge, skills, and abilities, and the mix of partici-
pants can influence the interpretations and implications that are developed. 

 Organizing a data interpretation meeting requires different degrees of 
preparation depending on who is likely to attend and the overall purpose 
for the meeting. For meetings that involve more complex data products, 
we have found it beneficial to put together  one-pagers  that describe the 
purpose of the analysis, a sample data product, and rules of thumb for 
interpreting the data product. These one-pagers are useful in preparing 
for and focusing a meeting. While a one-pager can help prepare partici-
pants for the meeting activities, we also work to frame the data-intensive 
analyses in two ways during a meeting, as we described in  Chapter 6 . First, 
we describe the history of an analysis: the questions we are answering, 
how we got to these questions, and why the partnership might find an 
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analysis valuable. Second, we create instructional data products that take 
a complex data product, distill it down into its simplest units, and pres-
ent it—often using made-up data that is easier to interpret than products 
using actual data. 

 It is important to have a plan, or routine, in place for jointly inter-
preting data products that are presented to the group. For example, we 
regularly use the “I Notice/I Wonder” routine from DataWise (https://
datawise.gse.harvard.edu/). We typically draw on this routine while we 
are walking through a data product that uses a partner’s data. “Wonder-
ings,” for example, can serve as useful fodder for developing implications 
and potential change ideas. In brainstorming potential changes, it can be 
useful to have specific strategies in place, such as specific brainstorming 
approaches, to gather and organize potential ideas. In Phase IV, these 
potential change ideas can be revisited and some might be turned into 
explicit tools and routines. 

 Phase IV: Co-Develop Change Ideas 

 With potential change ideas coming out of Phase III, the next phase in 
a CDI project is about further developing these ideas, selecting those 
to later implement, and making sure the necessary supports for imple-
mentation are put into place. In some cases, selecting, developing, and 
implementing a change idea can be easy because the change idea is rela-
tively simple and inexpensive, such as having Statway faculty set due 
dates for online homework assignments as described in Chapter 6. Other 
change ideas, such as providing tailored feedback messages within a digi-
tal learning environment, can be more costly to develop and implement. 

 A key element in moving from identifying to developing a change idea 
is continuing to engage both researchers and practitioners in the process 
(Penuel, Roschelle, & Shechtman, 2007). Important aspects of fleshing 
out a change idea involve  elaboration  and  scaffolding  ( Cohen & Ball, 
2007 ). Elaboration is a strategy for making a change idea explicit: 

 From one angle, extensive elaboration seems essential to illuminate an 
innovation’s requirements for use, to alert designers and implementers 
to work to be done, and to reveal potential problems. Less-elaborated 
designs would be not only less useful but even self-defeating, for they 
tacitly delegate large amounts of invention to implementers, increas-
ing the probability that the implementers would interpret interven-
tions as versions of conventional practice, since the designs offer little 
guidance for anything else, and conventional practice is both familiar 
and understood by implementers. 

 (p. 25) 

https://datawise.gse.harvard.edu
https://datawise.gse.harvard.edu
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 Scaffolding relates to the supports that are put into place to help practi-
tioners implement the change idea. Scaffolds can include everything from 
formal professional development sessions to worked examples that help a 
practitioner see what the change idea looks like in practice. Co-developing 
change ideas, therefore, can involve multiple steps, such as selecting high-
leverage change ideas from the multiple brainstormed ideas, making the 
selected ideas explicit, and developing scaffolds to help practitioners learn 
about the change idea and implement it. 

 Identify High-Leverage Change Ideas 

 High-leverage change ideas are those where there is evidence to suggest 
that a small effort may lead to large improvements. The partnership’s 
improvement theory is one tool for beginning to identify high-leverage 
change ideas. The primary drivers outlined in the theory are themselves 
intended to represent high-leverage aspects of the system that the part-
nership can modify to achieve its aim. Thus, the practical improvement 
theory developed during Phase II not only helps in shaping the data-
intensive analyses, but also helps in prioritizing potential change ideas. 

 Along with a partnership’s practical improvement theory, more general 
criteria for selecting change ideas include the following: short lead time, low 
cost, and control ( Nelson et al., 2007 , p. 326). Partnerships can be buoyed 
by early wins. Selecting a change that can be implemented with a short lead 
time increases the odds of attaining an early win by selecting something that 
will be easy and fast to implement. Change ideas with a short lead time are 
also typically low cost (i.e., in terms of time and money). Having control 
means that the partnership does not need extensive permissions to try out 
the change idea. Starting with a change idea that has all of these features 
means that the collaborators can become accustomed to moving through 
improvement processes first, before tackling more difficult change ideas. 

 In addition, as  Yeager et al. (2013 ) observe, evidence from research can 
be useful in selecting change ideas, particularly those studies identified dur-
ing the rapid literature scan of Phase II. As partnerships use their practical 
improvement theories and general criteria in selecting changes,  Nelson et 
al. (2007 ) note the importance of having those who will be implementing 
a change participate in the selection of the change to implement as well as 
the process of fleshing out the change idea. Based on our own experience, 
meaningful change ideas coming out of a data-intensive analysis some-
times involve simply collecting more data in order to understand a prob-
lem better. For example, in our work with both Summit and Carnegie, we 
engaged in multiple data product development and interpretation cycles 
and identified the need to identify as well as gather more evidence before 
launching into a change effort for the practitioners to implement. 
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 Make Change Ideas Explicit 

 Understanding and implementing explicit processes are critical for achiev-
ing reliable performance ( Bryk et al., 2015 ;  Nelson et al., 2007 ). Explic-
itness makes what is expected of a practitioner concrete (Krumm et al., 
2016c) by detailing the steps and decisions involved in a process, which 
is similar to the idea of a process map. However, instead of just naming a 
step, as in a process map, an explicit change idea includes a description of 
what each step entails. For example, in a recent project where we worked 
with a group of teachers to increase the quality of science discourse in 
elementary classrooms as our improvement aim, we broke down the steps 
involved in conducting a whole-class discussion and added content-specific 
phrases that a teacher could use that were unique to the lesson. Instead 
of telling teachers to “lead better discussions,” we worked with them to 
develop explicit, elaborated protocols on how to actually go about leading 
a discussion in a way that drew on the expertise of both researchers and 
practitioners. Another key component of explicitness, along with having 
steps and decisions outlined, is clarifying the situation or context in which 
a practitioner should implement the change idea—for example, tailoring 
the protocol to specific science lessons and clarifying when during a lesson 
to use the protocol (Moorthy & Krumm, 2017). 

 There are multiple ways to make change ideas explicit. In leading the 
homework improvement sprint described in the previous chapter, an 
improvement coach from Carnegie worked with faculty to select poten-
tial change ideas and to make them explicit for testing. Selecting changes 
to develop and implement proved easier than making the changes explicit. 
For example, the idea of sending email reminders to students seemed 
simple and straightforward. However, the timing as well as the substance 
of emails proved more difficult to agree upon. Efforts to create explicit 
tools and routines surfaced deeper beliefs related to the purpose of home-
work and the responsibility of students in managing their own work-
loads. Thus, in the process of making change ideas explicit, a partnership 
can wrestle with big issues and uncover additional aspects of a problem 
the partnership is working to solve (Meyer, Krumm, & Grunow, 2017). 

 Another strategy for making a change idea explicit is to iterate on it 
by having one group within the partnership brainstorm how the change 
could be implemented and then turn their ideas into a prototype. The 
prototype can then be handed over to another group for their additions. 
Over time, an implementable change idea can emerge from this process. 
In our work with Carnegie, this approach helped in developing more 
resource-intensive change ideas, such as new visualizations of produc-
tive persistence measures that could be implemented in the online learn-
ing environment. With each iteration of the prototype, the partnership 
got more specific about the visualizations and the resources needed to 
develop and test them. 
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 Develop Scaffolds to Support Implementing Change Ideas 

 While important, explicitness is not a substitute for working with prac-
titioners on what they need to know in order to implement a change 
idea well. Some changes may not require a lot of up-front learning on 
the part of practitioners. However, we have observed that even simple 
change ideas can require, for example, reminders to implement them. 
Professional development and reminders are both examples of potential 
scaffolds that partnerships often need to put into place in order to imple-
ment a change idea successfully. Thus, just as the change ideas themselves 
need to be made explicit, so too do the different supports and scaffolds 
that the partnership will provide to practitioners in order to implement 
the change idea. 

 Phase V: Test 

 Getting to the point where practitioners test a co-developed change 
idea is a tangible milestone for any CDI project, and many successful 
projects strive to test change ideas as quickly as possible. Some of the 
best learning for a partnership can occur from testing change ideas in 
real classrooms, and there are specific activities that can help ensure 
successful testing of a change idea. Success is defined by what the part-
nership is able to learn from a test in relation to their jointly developed 
aim statement and improvement theory. We use the term  improvement 
cycle  for efforts made by researchers and practitioners to test a change 
idea, which can create both short- and long-term learning opportuni-
ties for a partnership. Short-term learning involves getting the most 
out of an individual test by starting with an explicit idea, a hypoth-
esis about what will happen as a result of the change, data that will 
help in understanding what happened, and a mechanism for collecting 
data used to test a hypothesis. Improvement tools, such as Plan-Do-
Study-Act (PDSA) cycles, can be used to structure these tests. Long-
term learning involves documenting and keeping track of the multiple 
tests of change over time, and importantly, synthesizing what is learned 
from across multiple tests. 

 Testing can be done at different scales and with different numbers of 
practitioners.  Bryk et al. (2015 ), for example, identify the role of  confi-
dence  and  capability  in deciding on the scale at which testing can occur. 
Confidence stems from the strength of the evidence base, both from prac-
tice and research, for the potential positive benefits of a change idea. 
Capability concerns the relationship between current and necessary 
knowledge, skills, and abilities for enacting a change idea. Only when 
confidence and capability are both high should a partnership think about 
trying out a change idea at a scale larger than an initial handful of willing 
participants. 
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 Familiarize Partnership With Approach 
for Testing Change Ideas 

 Prior to testing out a change idea, partners must agree on a specific approach 
and timeline for testing it. For our work with Carnegie on increasing 
homework completion, for example, Carnegie researchers tested the three 
separate change ideas by randomly assigning combinations of changes to 
faculty members at the beginning of a semester. This provided the oppor-
tunity to test and refine the change ideas over two cycles at the beginning 
of the fall and winter semesters. In other partnerships, we have worked 
with groups of teachers to implement and iteratively refine change ideas, 
using PDSA cycles on a weekly basis (e.g., Krumm et al., 2016b;  Moor-
thy et al., 2016 ). No matter how the change idea is tested, those who are 
doing the testing can benefit from being familiar with the story of how 
the change idea was developed—causal system analyses, driver diagrams, 
and the data products produced in Phase III are key resources. Knowing 
the story can help those doing the testing understand the rationale for the 
changes being attempted, which can help in building will and in making 
sense of results from initial tests. Along with describing how the change 
idea emerged, the partnership should familiarize testers with the explicit 
details of the change ideas and the scaffolds that can be used to support 
their learning and testing. 

 In other scenarios, more may be asked of practitioners—from filling 
out formal PDSA forms to collecting data for subsequent analysis. In 
some situations, we have had teachers complete customized PDSA forms 
to document their tests of change ideas. One challenge with formality is 
that PDSA forms can come to be seen as added paperwork and lose their 
value for documenting tests. Finding ways to obtain measures of change 
idea implementation without burdening practitioners is a major challenge 
in Phase V. In the Statway test of homework completion routines, Carn-
egie researchers directly observed how change ideas were implemented 
and the partnership analyzed system log data to produce process and 
outcome measures. Given the variety of approaches and strategies that 
are available, it is important that teams are clear on an initial approach 
and are open to refining the approach depending upon what is helping 
the partnership. 

 Coordinate Tests of Change Ideas 

 Coordinating tests of change ideas involves clarifying how implementers 
will be brought together to share what the partnership is learning. For 
example, regular face-to-face or virtual meetings can provide opportuni-
ties for practitioners testing change ideas to report on what they are find-
ing and the adaptations they are making. These meetings can also harness 
the knowledge of a broader set of colleagues in brainstorming further 
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adaptations. In addition to regular meetings, tests can be coordinated by 
an improvement coach, common forms and reporting documents, and 
a collaborative infrastructure for storing and sharing what is learned 
from a test. An improvement coach is an individual with a background 
in improvement science who can help practitioners plan and document 
their tests. Common forms and reporting documents help each practi-
tioner collect information from a test that can later be aggregated across 
tests. As we noted previously, the potential downside of common forms 
and documents is that they can be perceived as paperwork and not com-
pleted as intended. For this reason, an important tip when using common 
forms and documents is to be open to modifying them over time based 
on practitioners’ feedback on a form’s relevance and ease of use (Krumm 
et al., 2016c). Lastly, common forms and documents, schedules, and other 
resources can all be stored and shared using online collaborative tools, 
such as an intranet, wiki, or cloud-based file hosting service. These tools 
can facilitate easier communication among those doing and supporting 
the work of testing change ideas. 

 Jointly Reflect on Results From Multiple Tests 

 After engaging in multiple tests of change, it is often beneficial for a partner-
ship to stop and reflect on what has been learned. The Institute for Health-
care Improvement’s  Breakthrough Series Collaborative  ( 2003 ) describes the 
importance of a summative meeting following tests of change ideas and 
learning sessions. These summative sessions can give researchers and prac-
titioners the opportunity to present their overall findings for a set of tested 
change ideas, to celebrate successes, and to plan for the next improvement 
project. Sharing findings across multiple tests can help a partnership more 
fully assess the overall project, and the partnership can strategize on longer-
term co-development tasks that could not be accomplished originally dur-
ing Phase IV as well as rethink potential data-intensive analyses. 

 Reflecting on the results from multiple tests often raises new issues that 
can serve as the starting points for additional improvement work. Aims can 
be revisited and refined, improvement theories can be added to, new data 
products can be developed, and new change ideas can be made explicit and 
prepared for future testing. Across multiple projects, we have found that 
joint reflection leads naturally to continuous improvement. After testing a 
series of change ideas, we frequently return to Phase III to explore the data 
collected during a set of tests to better understand the impacts of changes 
and to surface new questions for the partnership to explore. 

 Conclusion 

 In this chapter, we described the five phases of a CDI project. These phases 
were identified from our work across multiple partnerships, and when 
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paired with the conditions outlined in  Chapter 6 , they capture what it 
means to engage in CDI. The phases of  prepare  (Phase I) and  understand  
(Phase II) specify the importance of setting clear aims for a partnership 
and using prior research and wisdom from practitioners to shape data-
intensive analyses that occur during the  analyze  phase (Phase III). Joint 
data product development and interpretation set the partnership up for 
 co-developing  (Phase IV) change ideas and  testing  (Phase V) them in 
local learning environments. In bringing together improvement science 
and data-intensive research, all in the context of collaborating with prac-
titioners, we have sought to make explicit how the trends discussed in 
 Chapters 5  and 6 can come together in focused partnership work. In the 
next and final chapter, we reflect on the future of CDI. 
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 The basic premise of this book is that use of data for educational improve-
ment is nearing a tipping point enabled by the confluence of better data-
sets and analytic techniques and tools that make data easier to access, 
manipulate, and understand. But there are strong social and organiza-
tional aspects to data use—the kind of data-informed improvement work 
we have described in the preceding chapters will require new learning and 
ways of working on the part of all participants. In this final chapter, we 
step back from the details of data analysis and collaborative data-intensive 
improvement (CDI) practices and tools to reflect on the challenges that 
this kind of work poses for the participants who need to make it work. 
We consider the changes in practice that CDI requires on the parts of edu-
cation researchers, data scientists, education leaders, and frontline practi-
tioners, as well as learning technology vendors and developers. We then 
reflect on some of the lessons we have learned from our own and others’ 
early CDI efforts and offer some predictions with regard to future trends. 
Finally, we close with an invitation to others to undertake this kind of work 
and contribute their own insights into how to do it most productively. 

 Requirements for Changing Perspectives 
and Practices 

 The description of CDI in  Chapters 6  and  7  highlights the need for addi-
tional competencies, including a deep understanding of the goals, con-
straints, and processes of the local education system; knowledge of the 
learning sciences and educational research literatures; improvement sci-
ence concepts and tools; leadership skills; assessment (e.g., psychometrics) 
expertise; and knowledge of education research design and associated 
statistical approaches. This wide-ranging set of requirements reflects the 
complexity of the enterprise, but it should be remembered that CDI is a 
team endeavor. No one person needs to have or is likely to have all of 
these competencies. The important thing is to have them available some-
where on the team and to be able to call on them when needed. 

 Chapter 8 

 Lessons Learned and 
Prospects for the Future 
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 While CDI participants do not need to possess every required com-
petency individually, every participant is likely to need to make some 
changes in his or her usual ways of working. 

  Education researchers  will find that CDI—like any serious research–
practice collaboration—will require them to become comfortable with 
no longer having sole ownership of their research question, outcome 
measures, and research design. This is a fundamental change from the 
way most education researchers have been trained and from what they 
have come to expect. Making the shift is difficult also because many edu-
cators too are accustomed to ceding responsibility for research decisions 
to researchers. Researchers may find that their collaborators are reluctant 
to question them, which is one of the multiple reasons that trust and 
mutual respect are such important drivers for engaging in CDI. 

 Education researchers, especially those steeped in traditional research 
design, such as random-assignment experiments, may also be challenged 
by the more engineering- and design-based methods of CDI. The central 
goal under CDI is to improve outcomes, not to execute perfect research 
designs. Learning fast through small tests of change means that many of 
those tests will involve relatively few teachers and instructors. From a sta-
tistical view, these tests will be underpowered and hence unlikely to show 
statistically significant differences unless the intervention’s impact is very 
large. Moreover, statistical significance (i.e.,  p -values) will not necessarily 
drive decisions about whether or not to stick with an intervention. Other 
kinds of information, including the insights and opinions of teachers and 
students, will be taken into account, and conclusions from early itera-
tions will be tentative, awaiting more data from additional tests across 
expanding numbers of increasingly diverse environments. 

 For these reasons, among others, education researchers are likely to 
find that some scholarly journals will not be receptive to articles based on 
CDI work. Rapid improvement cycles are designed to generate evidence 
that is good enough to inform the next implementation cycle, which is 
different from adhering to the methodological requirements for publica-
tion in peer-reviewed research journals. This challenge may ease some-
what over time as conceptions of rigor and quality in education research 
continue to evolve. There are some indications that a more expansive 
view of what education research can and should be is emerging ( Barab & 
Squire, 2004 ;  U.S. Department of Education, 2013 ; Penuel & Gallagher, 
2017). For example, some scholars have commented on the fallacy of 
defining research quality exclusively in terms of adherence to a random-
assignment design supporting causal inference (e.g.,  Ginsburg & Smith, 
2016 ). 

 It can be useful to see that CDI engagements are perfectly compat-
ible with large experimental studies of educational impacts performed 
at a point in the collaboration when the improvement idea has resulted 
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in a definable intervention that is considered ready for implementation 
at scale. Moreover, we would argue that experiments performed as the 
culmination of a CDI effort are actually more likely than others to find 
positive impacts by virtue of the fact that they take a systematic view 
of the intervention and its implementation. It is important to recognize, 
however, that CDI is not solely a handmaiden or onramp to large-scale 
experimental studies. These modes of inquiry are distinct and serve dif-
ferent purposes—improving learning environments over time (i.e., CDI) 
as opposed to building knowledge or making strong claims about an 
intervention’s effectiveness (i.e., experimental research designs). Though, 
an important caveat to this claim is that the practical theory building 
and measurement work that accompanies a CDI project, while directed 
at supporting the learning of those engaged in the work, are the building 
blocks of a well-designed experimental study, while the inverse is often 
not the case. Said differently, measures developed for a CDI project can 
be used to better understand the results of an experimental study; data 
collected for the purpose of an experimental study, alone, are often not 
well suited for collaborative, iterative improvement work. 

  Educational data scientists  participating in CDI may need to conceive 
of their work on longer time scales, going beyond data analysis and into 
intervention development and testing. Once intervention ideas have 
been formulated and are being tried out, the analytical work of a data 
scientist can be useful in providing a near-term outcome for rapid small 
tests of change. But data scientists might have to adjust to the expecta-
tion that they build a much deeper understanding of educational prac-
tices at their partner institutions than they may be used to. Another 
change for educational data scientists engaged in CDI is being called 
on to move beyond familiar routines for exploring a single dataset, 
such as from a particular digital learning environment. For educational 
data scientists engaged in CDI, they will need to be polyglot and quick 
studies with data from diverse sources used to serve diverse improve-
ment goals. Moreover, data wrangling and exploration are often just 
as important as predictive modeling when it comes to adding value to 
practitioners. 

  Education leaders and frontline practitioners  will find that CDI imposes 
a discipline on the way in which they make decisions around the prob-
lem of practice being worked on jointly. They are committing to a spe-
cific goal, including a metric and target level for the amount of progress 
toward that goal that will be considered a success. They are also commit-
ting to use data rather than instinct or political expediency to shape deci-
sions about future instruction. Becoming a reflective and data-informed 
practitioner in this way requires time—both to understanding ideas com-
ing from other fields (i.e., data science and learning science research) and 
to implementing the new instructional practices coming out of the collab-
oration. Time requirements for participating in CDI will be particularly 
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taxing for core team members from education institutions because they 
typically already have full-time responsibilities. 

  Technology developers  involved in this kind of research may find them-
selves challenged by CDI’s requirements for openness. A learning technol-
ogy startup company can be driven by the goal of getting a product to 
market as rapidly as possible and scaling to large numbers of customers 
in order to attract further investment. Under these circumstances, it is 
natural that they are concerned about the possibility of public release 
of any information about lack of impact that some might be construed 
as evidence of weaknesses in their product. Allowing data scientists, 
researchers, and practitioners to look under the hood and work with 
data from your learning system requires tremendous confidence in the 
quality of your product and in the good faith and discretion of your CDI 
partners. Investing time in building relationships with these partners is 
also a real cost that may worry leaner startup companies. 

  All of these collaborators  will need to overcome differences in the 
key concepts and terminology used in their respective fields to learn to 
communicate effectively with one another. They also need to become 
aware of and sensitive to the different goals, constraints, workflows and 
communication styles within their respective organizations. Research-
ers need to appreciate the fact that practitioners have full-time jobs 
other than participating in the research–practice partnership. Finding 
time to be full-fledged partners can be challenging for them, and other 
partners need to respect their time constraints. An additional complicat-
ing factor is that the participation of researchers will often be funded 
by some organization outside of the partnership, and research funding 
often comes with its own requirements around timetables, products, 
and methods. 

 Examples described in  Chapters 6  and  7  demonstrate that these chal-
lenges can be overcome, but doing so will be easier if the challenges are 
anticipated and the team actively addresses them early. And although the 
many differences between research organizations, learning technology 
companies, and education institutions can pose challenges for CDI, as 
described previously, there are also multiple congruencies that can support 
collaborations. The concept of working through multiple, iterative cycles, 
for example, is common to data science, technology development, and con-
tinuous improvement efforts in education. More fundamentally, all of the 
partners share the goal of providing students with learning experiences 
that will lead to more consistently positive outcomes. Shared values around 
this goal are an important driver for CDI, as described in  Chapter 6 . 

 What We’re Learning 

 Across the multiple projects and partnerships in which we have worked, 
we have identified the following takeaways. 
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 Formulating Meaningful Variables Is Central 
to the Work of CDI 

 The extraction of data that can stimulate insights into teaching and learn-
ing problems and their potential mitigation requires reducing and focus-
ing a dataset. The thousands of observations that can accumulate for each 
student in some environments often need to be consolidated into con-
structs relevant to teaching and learning, which we described as  feature 
engineering  in  Chapters 2  and  3 . The learning analytics consulting firm 
Civitas Learning describes four categories of derived variables they have 
found useful in their work relating online learning activities to college 
outcomes ( Civitas Learning, 2016 ).  Consistency  variables capture how 
regularly a student engaged in a certain course activity such as viewing 
learning resources, completing embedded assessments, or posting to a 
discussion board.  Normative  variables capture a student’s performance 
in a course relative to that of other students in the same course.  Min 
and max  variables are the lowest and highest values of something, such 
as percentage correct on a quiz or number of log-ins in a week, for an 
individual student.  Average  variables for a student look across multiple 
datasets or time periods to compute an average for each student, such as 
average grade across all courses or average monthly attendance rate for 
a school year. Learning scientists, instructors, and data scientists all have 
expertise to contribute to these critical decisions about the right features 
to measure and how they should be defined. Defining these constructs 
conceptually and operationally constitutes a major task for data scien-
tists working in collaboration with practitioners ( Bienkowski, Feng, & 
Means, 2012 ;  Siemens & Baker, 2012 ). 

 Data Scientists Need to Make Sure They’re 
Working on a Real Problem of Practice 

 For a data scientist, a large and complex dataset offers seemingly endless 
possibilities, and it can be difficult to resist the temptation to jump into 
the data prematurely, before the collaborators have agreed on what prob-
lem they’re trying to solve. It’s easy to find what looks like an anomaly in 
learning system data (e.g., a group of students who fail in an early learn-
ing module and then do extremely well in a subsequent one) and then 
to make conjectures about the teaching and learning problem these data 
might reflect. But that conjecture can easily be misguided if the partner-
ship analyst lacks contextual information about where, when, and under 
what circumstances the learning system was used. Moreover, even if the 
conjecture is correct, the problem addressed by the partnership may well 
be trivial from the standpoint of practitioners. A commitment to CDI 
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means working collaboratively between researchers and practitioners to 
identify the problem of practice to be solved and letting that problem 
drive data analyses—not the other way around. 

 You Have to Leave Your Desk to Understand 
Teaching and Learning 

 Instruction is best understood as a complex phenomenon emerging from the 
interactions among students, teachers, instructional resources and a host of 
contextual factors (Cohen, Raudenbush, & Ball, 2003). Data from admin-
istrative systems, digital learning environments, or sensors and recording 
devices will not capture everything that is important about instruction and 
the context within which it occurs. Researchers need to supplement what 
they can learn from such data systems with the kind of qualitative data 
that can be gained from observations, interviews, and focus groups with 
teachers and students. Accessing a digital learning environment from afar 
can be useful, as are discussions with the system designers about their inten-
tions and the system architecture, but these activities are no replacement for 
actually talking to students and teachers about how they use the system and 
how they think about its components and functionalities. 

 Data for Generating Change Ideas Should Not Be 
Confused With Data for Other Purposes 

 CDI uses data for these three different purposes—understanding, predic-
tion, and assessing changes—and it’s important that researchers let the 
team’s current purpose drive the analyses they run. In Phases I and II of 
the CDI process described in  Chapter 7 , data on system practices and out-
comes are examined to enhance the team’s understanding of the problem 
they want to work on and to spark ideas about how they might address 
it. As described in  Chapter 7 , we have found that at this stage a diverse 
set of visualizations can be useful for inspiring ideas for change. But these 
data products are merely a means to that end; they are not the same thing 
as changing what and how teachers teach and students learn. Later in a 
collaboration, after a partnership has generated change ideas and imple-
mented one or more of them in small tests of change, researchers can 
extract data on the outcome measure that has been defined as the early 
indicator for their long-term goal. At this point, researchers do not need 
to be looking for all the variables that correlate with that outcome or to 
be looking for interesting student profiles. Researchers’ primary job at 
this point is to provide the results from the outcome measure so that the 
team can see whether or not the change in practice enhanced the outcome 
the team had selected for improvement. 
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 We can illustrate this required change in focus with a hypothetical 
CDI project that might have been triggered by the experiences of Geor-
gia State University, which worked with researchers to review a decade’s 
worth of data for students in its nursing program. Their expectation was 
that grades in the Conceptual Foundations of Nursing gateway course 
would predict program completion ( Treaster, 2017 ). They were surprised 
to learn that this was not so, but grades in a nursing student’s first college 
math course was predictive of program completion. At this juncture, a 
CDI team focused on improving outcomes would begin examining data 
on the introductory math course as conventionally taught to generate 
ideas about how it could be changed in ways that would result in more 
nursing students completing it successfully. A CDI effort around this 
problem of practice might then design an early intervention program for 
nursing students earning less than a B midway through that math course. 
In the next phase of their work, the CDI team would test out the interven-
tion to ascertain the extent to which it increases the proportion of nursing 
students earning As or Bs in their initial math course. Here, an experi-
mental or quasi-experimental design would be appropriate and course 
grade would provide the needed outcome measure. Later impact analyses 
could examine the extent to which the intervention also increased the 
long-term outcome of completing the nursing program. These data are 
different from the data that informed the change idea, and in this case 
conventional statistical approaches from education research would suf-
fice for testing the efficacy of the intervention. 

 Another confusion of purpose can occur when the data products used 
with the core team to try to understand the problem or trigger ideas for 
addressing it are incorporated into the intervention. The visualizations 
produced to display complex datasets to try to understand a problem or 
predict student success were not designed to be folded into instructional 
practice. Visualizations commonly used by data scientists are perceived by 
educators as difficult to understand, and impossible to interpret with just a 
rapid glance. If predictive analytics to identify students who should receive 
a different kind of learning experience or more intensive support are to be 
part of an intervention, the practitioners who must act on this information 
need to receive it regularly and in a form that can be understood easily and 
quickly. Data products should be designed expressly for this latter purpose 
and their usability should be tested as part of the change idea. 

 You Should Set Up Data Security Procedures and Data Use 
Agreements Before Touching Any Individual-Level Data 

 The importance of data privacy and security for CDI was discussed 
extensively in  Chapter 4 . Using large-scale data systems with records for 
individual students and detailed logs of student behaviors when learning 
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online are characteristics of CDI. Because individuals’ learning data are 
in the dataset, and data records from multiple systems may be linked, 
researchers have a strong obligation to shield individual identities and 
prevent acquisition of the data by unauthorized individuals. As described 
in  Chapter 4 , there are some well-established routines and technology 
tools for securing data, but applying them requires resources and vigi-
lance. Admittedly, the first time a CDI team deals with obtaining insti-
tutional review board approval, data anonymization, secure file transfer, 
and so on, each of these steps is likely to feel complicated and labor 
intensive. But again, being forewarned is being forearmed. Anticipating 
these steps in project plans and data use agreements makes for a smoother 
workflow. We have found that having someone on the team who has 
specialized in executing these steps and acts as the project’s data steward 
can make sure that human subjects and data protection functions are 
executed efficiently. As they become part of standard practice, the time 
required to execute these functions will decrease, but it will never become 
insignificant. 

 Looking Ahead 

 We’re under no illusion about our ability to make long-term predictions, 
especially in an area changing as quickly as data science. However, we do 
see some emerging trends that can reasonably be expected to influence 
CDI type work over the next five years. 

 Learning Technologies Better Designed to Support 
Data Analytics for Improvement 

 Having worked with data from dozens of learning technology products, 
we’ve found that they vary markedly in the ease with which they can be 
used to inform instructional decision making. Despite the millions of data 
points that are potentially available, connecting an action a student takes 
within the learning system with the broader learning context in which 
the action was taken may not be possible from the log data, thus posing 
challenges for interpreting the data. For example, some systems log the 
correctness of each student’s last answer to each question but not how 
many times the student tried to answer that question. How then do we 
disentangle the degree to which the content was learned from the extent 
to which the student persisted after giving a wrong answer? Learning 
software that was not intentionally engineered to support analytics yields 
data elements that may not be related to a theory of learning. We expect 
and hope that future learning technology designers will anticipate subse-
quent analyses and improvement efforts as they design the data collection 
and storage features for their software. This will require conceptualizing 
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how content or services can contribute to learning in the form of a coher-
ent theory for improvement (see  Chapter 7 ), and then instrumenting the 
learning software to collect data that would validate, refute, or suggest 
directions for refining that theory. 

 Better Data Governance 

 The application of data science to large datasets generated by digital learn-
ing systems started before any consensus around data ownership, open-
ness, and appropriate data security and privacy had time to emerge. Many 
education institutions signed contracts with learning technology and online 
service providers before thinking about the value they might derive from 
having access to data themselves. Most of the public discussion so far 
has been about whether or not technology providers should be able to 
use system data for other purposes (e.g., to inform targeted advertising 
or improve their products) as discussed in  Chapter 4 . But some higher 
education institutions in particular are starting to negotiate with ven-
dors over who has access to, and ownership of, the learning data of their 
students. We believe that this issue, as well as those of data privacy and 
security, will become a standard part of negotiations among school sys-
tems, vendors, and external research organizations. One thing we have 
observed is that major segments of the public are very concerned about 
giving commercial organizations access to student data, even if it has, in 
theory, been anonymized. Because there is no obvious way they might 
profit from the data financially, there usually is less concern about hav-
ing researchers within the education institution or in external academic 
or nonprofit research organizations maintain the data for the life of a 
research effort. 

 We expect that more standard practices for data protection and pro-
tection of human subjects in keeping with federal guidelines will emerge 
over the next five years. Indeed, a number of groups, such as the National 
Academy of Education, have been advocating for more balanced regula-
tions that will make data more available for education research (National 
Academy of Education, 2017). State laws around data privacy and pro-
tection are in much more flux, however, and this situation is likely to 
continue for some time. 

 Greater Use of Unstructured and Multimodal Data 

  Chapters 2  and  3  provided an abbreviated treatment of some of the newer 
types of data and associated analytic techniques being used to explore 
learning processes. These include automated systems for tagging video 
data, automated text mining, and techniques for working with audio 
file data. While not usually incorporated into today’s commercial digital 
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learning products, such capabilities are being used in research proto-
types and have intriguing potential for use in improvement research. 
For example, effective collaboration has been identified as an important 
skill, and one that many students have yet to acquire. D’Angelo and col-
leagues (2015) are working to combine audio and learning system data 
to generate automated indicators of the quality of collaboration among 
student triads working in classrooms. These investigators have middle 
school students work together on mathematics problems presented on 
a laptop while each student wears an individual microphone to pick up 
his or her speech. A speech activity detection system can be run on each 
student’s audio channel to generate data on who is speaking when. These 
data are then combined with time-stamped data from the learning system 
so that each student’s speech utterances can be linked to the problem 
being worked on. Without doing any analysis of the actual content of 
the students’ speech (i.e., what they said), the researchers have been able 
to generate indices such as equality of participation, which have been 
shown to correlate with quality of collaboration in prior research ( Richey, 
D’Angelo, Alozie, Bratt, & Shriberg, 2016 ). 

 In addition, more advanced techniques like neural networks (recently 
used to improve Google Translate) are likely to be applied to a greater 
extent to large, complex education datasets than they have been in the 
past. These techniques may generate insights heretofore unavailable, but 
we note that the lessons around the need for collaborative interdisciplin-
ary teams and the need for a systematic, improvement-focused approach 
will apply just as much to these newer techniques as they do to more 
widely used analytical techniques. 

 Press for Accountability and Transparency Around 
Algorithms Used Within Digital Learning Products 

 One of the benefits of CDI participation for educators is the opportu-
nity to learn about how students interact with digital learning systems 
and how to make sense of the data those systems can provide. Many—
perhaps most—of these systems are marketed as being “adaptive” and 
promoting “personalization.” Unfortunately, there are no generally 
accepted definitions for these terms, and marketing materials focus on 
rosy abstractions (e.g., “giving each student exactly what she needs”) 
rather than explaining concretely how the system responds to stu-
dents’ correct and incorrect answers. As educators become more aware 
of how digital learning systems actually work, they are going to push 
technology vendors for more detail. Does the system give every student 
the same set of assessment items and adapt just by letting students go 
through the material at their own pace? Does it keep cycling a student 
who does poorly on an end-of-module assessment through the same 
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quiz items until the student gets 80 percent correct? Does the system 
diagnose different kinds of errors and give different hints or supports 
depending on that diagnosis? Or does it just tell the student whether 
or not his answer was correct? Are there different sets of materials or 
paths through the materials for students diagnosed as having different 
kinds of problems? We expect digital learning system providers to face 
more questions around these issues, and the answers may well more 
questions decisions. 

 Call for Incorporating Cost Analyses Into Improvement Work 

 One of the trends we have seen in our learning technology evaluation 
work generally is a desire to look at costs and cost savings along with 
impacts on education outcomes. We believe that this movement will affect 
CDI efforts as well. In the case of the hypothetical CDI around nurs-
ing program completion used as an example previously, analysts would 
use the estimates of the impact of the early math intervention on pro-
gram completion in a cost analysis—examining the amount of additional 
tuition the college received from the students who persisted in the revised 
program who would have been expected to drop out if they had not expe-
rienced the new intervention. These data then would provide a basis for 
estimating the additional tuition expected if all nursing students receive 
the math intervention over the next five years. Analysts also would need 
to look at the cost of the intervention relative to the way the nursing 
program was structured in the past, and the cost of the CDI effort itself 
would be part of this analysis. If the CDI effort really has been success-
ful, benefits should far outweigh the costs. Through such analyses, the 
value added by the effort could be demonstrated in terms that education 
stakeholders can appreciate. 

 Data Science’s Transition to the Post-Hype Phase 

 Gartner, a well-known information technology consulting firm, devel-
oped and disseminated a framework for thinking about fast-growing new 
technology applications they call the “Hype Cycle.” First, a new tech-
nology development serves as a trigger for what they call the “Peak of 
Inflated Expectations.” As people gain more experience with the tech-
nology application, they gain a more realistic picture of what it can and 
cannot do, and the technology moves into the “Trough of Disillusion-
ment.” At this point, the technology gets less public attention, but work 
tends to continue and as the technology becomes more mature and people 
start using it with realistic expectations, the “Slope of Enlightenment” is 
entered. Finally, mainstream adoption of the technology takes off in the 
final portion of the cycle, the “Plateau of Productivity.” 
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 A well-known example of movement through this cycle is that of 
MOOCs, which arguably are now in the Enlightenment portion of the 
cycle. For big data and data science, though, it seems we are still in the 
phase of Inflated Expectations. Real solutions to education problems come 
from hard work, but flashy anecdotes and examples about surprising data 
patterns are what garner attention. In the next five years, we expect the 
field of data science to become more transparent about how it works with 
education and learning data. Likely, big data and data science will lose 
some of their cachet at this point, but as they move from hype to reality, 
real change and valuable applications are likely to occur. As data gover-
nance and technologies get better and more mature, we expect to see a lull 
and then a second uptick in interest in applying data science to education 
once a larger group of people develop expertise and want to pursue this 
work despite its requirements for attending to myriad details, setting up 
a data infrastructure, and negotiating with partners with different kinds 
of expertise. Once educational data science gets past the Trough of Disil-
lusionment and starts to be applied widely to jointly-defined problems of 
practice cases of improved learning environments are likely to proliferate. 

 An Invitation to the Field 

 We have advocated for a complex, multi-perspective, iterative process for 
collaborative efforts to leverage education data for improvement. Because 
the endeavor is challenging and complex, we have offered descriptions 
of how such partnerships can be realized, so that a team could use this 
model to move through the work in phases comprising key phases and 
supporting conditions. But we cannot offer a cookbook for this approach. 
Instead, we provide enough guidance and scaffolding to inspire and 
equip other individuals and organizations for the kind of work we have 
characterized as collaborative data-intensive improvement. It is not our 
intention to treat our description of the process and the way we have 
implemented it as inviolable. We recognize that teams are going to have 
to work hard to build their own partnerships and that it will take cour-
age, creativity, and persistence to sustain and keep on improving their 
own collective inquiries. We encourage others to elaborate, modify, and 
reconstruct the practices and tools described in this book based on the 
specific situations they encounter. This kind of work is both challenging 
and exciting—iteration, refinement, and knowledge sharing will be key to 
harnessing data science for educational improvement. 
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  A/B testing  Comparing two versions of a web page, application, or 
other product by showing each version to a random sample of users 
and measuring their responses. 

  Administrative data systems  Systems that store educational data for 
schools and districts as well as state and federal governments to man-
age operations and services provided to students. 

  Algorithm  A precise set of rules or instructions that outline the compu-
tational steps needed to do calculations or solve problems. 

  Artificial intelligence  The ability of computers to perform tasks asso-
ciated with intelligent human behavior, such as reasoning, decision 
making, and object recognition. 

  Attributes  See  Feature . 
  Behavior detectors  A way of using data from digital learning envi-

ronments as well as sensors and recording devices to infer aspects of 
human behavior and affect, such as frustration, boredom, and “gam-
ing the system.” 

  Big data  While imprecise and regularly shifting, big data can be thought 
of as datasets that require specialized database and software tools to 
manipulate and analyze. 

  Classification algorithm  A type of prediction algorithm that takes 
inputs, or observations, to predict a categorical known outcome. 

  Clustering algorithms  Clustering is a common unsupervised learning 
method that groups similar observations together. Clustering algo-
rithms differ in the ways of quantifying “closeness” among observa-
tions and “differences” between groups of observations. Hierarchical 
cluster analysis recursively groups similar observations.  K -means 
clustering requires a human-specified number of groups with which 
the algorithm maximizes similarity within clusters and diversity 
between clusters. 

  Cognitive task analysis  A method of understanding and documenting 
the hidden cognitive activity involved in a task, such as solving a 
problem or making a decision. 

 Glossary 
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  Confusion matrix  A 2 × 2 table that lists the number of true-negatives, 
false-negatives, true-positives, and false-positives. 

  Continuous improvement  A structured approach for iteratively refin-
ing a process, service, or product over time. 

  Cross-validation  Used for training a model using a test-train split 
of the dataset. Cross-validation involves breaking a dataset into a 
specific number of subsets, holding out one subset, and using the 
remaining data to train a model that is then tested on the held-out 
sample. This process happens for each held-out sample and can be 
repeated a desired number of times. 

  Data breach  Access or use of information—sensitive, private, confiden-
tial—by unauthorized users. A legal term for an event that requires 
notification to the affected parties. 

  Data fusion  The process of integrating multiple data sources to pro-
duce more consistent, accurate, and useful information than that 
provided by any individual data source. 

  Data interoperability  The ability of different information technology 
systems and software applications to communicate and exchange 
data in a usable form. 

  Data product  An outcome of an analysis in the form of a table, visu-
alization, or algorithm that is intended to communicate something 
to an audience. Data products can be static, updating, or interactive. 

  Data science  The application of data analysis, programming, and domain 
expertise in order to extract meaningful insights about important 
issues. Includes the use of statistical approaches and machine learning 
techniques. 

  Data scientist  Person who acquires, manages, and analyzes large com-
plex datasets. Such individuals generally possess a combination of 
computer science skills, a background in statistics as well as machine 
learning, and relevant domain expertise. 

  Data sprint  An event where data scientists meet up with data providers 
and other stakeholders to intensively and jointly analyze data over a 
short period of time, typically less than one week. 

  Data use agreements  Written agreements between researchers and 
schools/districts that outline exactly which administrative data are to 
be given to the research organization, how the data will be used, and 
when the data will be destroyed. 

  Data visualization  Involves graphically or visually representing one or 
more features in a dataset so that potential patterns can be discerned 
by human perception. 

  Data warehouses  Digital storage systems that provide access to current 
and historical data and provide a platform for sharing and exchanging 
information stored in separate datasets or “silos.” A key challenge is 
to bring together data from systems designed to capture transactions 
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(such as showing up to a particular class on a particular day) with 
more static data (such as a student’s prior courses). 

  Database  A software system for updating and accessing data. A rela-
tional database stores data in tables. Data from a relational database 
can be accessed in many different ways based on how data are con-
nected using linking variables. 

  Data-driven decision making  Practices for data collection, analy-
sis, and use that support organizational and instructional decision 
making. 

  Data-intensive research  The use of data that stretch the typical stor-
age, computational requirements, and/or complexity that is currently 
typical of a research field. 

  Design research  A system for improving learning environments through 
iterative cycles of design, development, and implementation. Design 
research emphasizes collaboration among researchers and practitio-
ners in real-world settings. 

  Design-based implementation research  A type of design research 
in which researchers and practitioners attend to improving learning 
environments as well as scaling and supporting the sustainability of 
efforts to improve learning. 

  Dimensionality reduction  In statistics and machine learning, refers to 
ways of reducing the number of features, or variables, in a dataset. Com-
mon approaches include principal components and factor analyses. 

  Disclosure  Release of private information shared in one context within 
another context. 

  Driver diagram  An improvement tool that outlines a group’s theory 
for how to achieve a desired outcome by identifying necessary and 
supporting conditions as well as specific change ideas. 

  Educational data mining  The use of statistical and machine learning 
methods to discover patterns in educational data. Often concentrates 
on identifying patterns within datasets from specific digital learning 
environments like intelligent tutoring systems; these same technolo-
gies typically deliver interventions aimed at improving learning. 

  Evidence-based practice  A term used in both healthcare and educa-
tion to describe an explicit commitment to engaging in practices that 
are based on the best available research evidence. 

  Exploratory data analysis  Can involve some combination of data 
visualization and feature engineering to understand the structure of 
and relationships within a dataset. 

  Family Educational Rights and Privacy Act (FERPA)  FERPA imposes 
responsibilities on entities handling education data as a means of 
protecting parents’ and students’ rights. It gives parents and eli-
gible students the right to review students’ educational records and 
requires that schools obtain their consent before disclosing any student 
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information contained in those records to third parties—except in the 
case of a specified set of exemptions. 

  Feature  A feature is a column within a dataset that contains data for 
multiple observations, or rows. Other names for features include 
variables and predictors. 

  Feature engineering  Feature engineering is the process of creating 
new variables within a dataset using theory-driven, context-driven, 
or automated approaches. 

  Fishbone diagram  An improvement tool used to display factors con-
tributing to a problem or undesirable situation; also called a “cause-
and-effect” or Ishikawa diagram. 

  Harms  Negative consequences from a privacy breach, such as eco-
nomic or psychological (e.g., embarrassment). 

  Information/data security  Standards for electronic storage (including 
encryption) of personal information and other data such that only 
authorized access is allowed. 

  Institutional review board (IRB)  Typically committees or individuals 
who review applications for research and approve/recommend alter-
ations to research procedures based on the legal statutes and ethical 
requirements governing research with human subjects. 

  Intelligent tutoring system  (ITS) Type of digital learning environment 
that applies artificial intelligence to students’ interactions with the sys-
tem. ITSs collect information on a student, her progress in the system, 
and interactions that she engages in during a learning task, providing 
feedback in the form of hints, strategies, and different ways to practice 
skills. 

  Interoperability  See  Data interoperability . 
  Knowledge discovery in databases (KDD)  A general term for 

the process of extracting information from raw data. The phrase 
emphasizes that knowledge is the key outcome of any data-driven 
inquiry. 

  Knowledge engineering  Involves using theory and approaches like 
cognitive task analysis or expert interviews to develop an algorithmic 
representation of a focal construct. 

  Learning analytics  A research field that uses a variety of analytical 
techniques to guide human judgment, support human action, and 
optimize learning environments. 

  Learning curve  A graphical representation of the relationship between 
learning trials and quality of performance. 

  Learning management system (LMS)  Online system that supports 
instructors in delivering course content and supporting online learn-
ing activities. Within an LMS, instructors and students can share 
instructional materials, make class announcements, submit and return 
course assignments, and communicate with one another online. 
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  Machine learning  An overarching label for data analysis approaches 
that use supervised and unsupervised algorithms to identify patterns 
within a dataset. 

  Massive Open Online Courses (MOOCs)  Free web-based course 
designed for delivery to large numbers of geographically dispersed 
learners. The course is open to anyone with an Internet connection, 
without consideration of academic qualifications. 

  Multimodal analytics  Computational methods for blending multiple 
data streams from sensors, recording devices, and digital learning 
environments to identify patterns across data streams. 

  Munging  See  Wrangling . 
  Networked improvement community (NIC)  A scientific community 

that comes together to achieve an improvement goal with a common 
understanding of the problem they are trying to address and a com-
mitment to trying out new approaches and to sharing knowledge 
across network participants. 

  Open data  Data that are available for anyone to access or use; making 
open data usable means making it accessible in machine-readable, 
structured, granular, and well-documented formats. 

  Personally Identifiable Information (PII)  Student information that 
can be used to distinguish or trace one student uniquely through 
direct or indirect linkage. 

  Plan-Do-Study-Act (PDSA) cycle  A method for testing a change idea 
by developing a plan to test the change, carrying out the test, observ-
ing and measuring the consequences, and selecting modifications for 
the next cycle. 

  Predictive modeling  See  Supervised learning . 
  Predictors  See  Feature . 
  Preprocessing  See  Wrangling . 
  Privacy  Control over one’s data and an expectation that personal infor-

mation will only be collected or used within a particular context. 
  Regression algorithm  A type of prediction algorithm that take inputs, 

or observations, to predict a continuous outcome. 
  Regressors  See  Feature . 
  Reproducible science  Research carried out and documented in such a 

way that the data analyses can be duplicated, supported by access to 
the original data as well as the computational steps taken to process 
data and generate results. 

  Research–practice partnerships  Long-term collaborations between 
education researchers and educators for the purpose of performing 
research that can be used to improve education practices and outcomes. 

  Sankey diagrams  Illustrate the movement of inputs across key steps, 
changes, or decision points making up a flow of activity whereby the 
width of various “flows” is proportional to the quantity of inputs. 
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  Sensors and recording devices  Physical instruments that are used to 
capture and store biometric and other data in space and across time, 
including location, physical movement, and speech. 

  Statewide longitudinal data system (SLDS)  A type of administrative 
data system containing information on all of a U.S. state’s public 
school students and capable of tracking student information over 
multiple school years and across multiple schools. SLDSs can include 
a unique statewide identifier for every student as well as each stu-
dent’s demographic characteristics, enrollment history, and scores on 
statewide accountability tests. 

  Structure discovery algorithms  A class of unsupervised learning 
techniques that identify relationships across features within a dataset 
without being trained against a known outcome. 

  Structured data  Organized for efficient processing. While lacking a 
precise definition, in general, structured data are any kind of data 
organized into a table with rows and columns. 

  Student information system (SIS)  A type of administrative data system 
used by schools and universities to store student-level information, such 
as demographics, course schedules, attendance, grades, and test results. 

  Supervised learning  Builds computational models that quantify rela-
tionships between features and a known outcome (also called labels or 
dependent variables). In effect, supervised learning builds a model that 
can predict a value based on learning from many labeled examples called 
the training set. This training set, often consisting of human-labeled 
inputs and outputs, constitutes the supervision of the learning process. 

  Unstructured data  In contrast to structured data, these type of data 
may have an internal structure but do not outwardly conform to tra-
ditional ways of organizing data for efficient transactions. 

  Unsupervised learning  A way of finding patterns or structure in a 
dataset without having known outcomes, or labels, to learn a model 
for the data. Unsupervised learning is useful for understanding hid-
den relationships among features in one’s dataset. 

  Variables  See  Feature . 
  Vs, The 4  Volume, velocity, variety, and veracity. Volume is about the 

amount of data available measured in bytes, a unit of measure in 
computer memory. Velocity addresses the speed, or rate, at which 
data are generated. Variety describes the types of data, such as dif-
ferent events tracked within a digital learning environment or the 
variety of data types used in an analysis, such as audio and video. 
Veracity captures the degree to which one can trust data. There are 
no standard units of measure for veracity, but data can be untrust-
worthy for a variety of reasons, such as data entry errors. 

  Wrangling data  Refers to the work of manipulating and cleaning data, 
and includes identifying, acquiring, and importing data into analysis 
software. 
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